Full text

Turn on search term navigation

© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

The polygenic nature of Alzheimer’s disease (AD) suggests that multiple variants jointly contribute to disease susceptibility. As an individual’s genetic variants are constant throughout life, evaluating the combined effects of multiple disease-associated genetic risks enables reliable AD risk prediction. Because of the complexity of genomic data, current statistical analyses cannot comprehensively capture the polygenic risk of AD, resulting in unsatisfactory disease risk prediction. However, deep learning methods, which capture nonlinearity within high-dimensional genomic data, may enable more accurate disease risk prediction and improve our understanding of AD etiology. Accordingly, we developed deep learning neural network models for modeling AD polygenic risk.

Methods

We constructed neural network models to model AD polygenic risk and compared them with the widely used weighted polygenic risk score and lasso models. We conducted robust linear regression analysis to investigate the relationship between the AD polygenic risk derived from deep learning methods and AD endophenotypes (i.e., plasma biomarkers and individual cognitive performance). We stratified individuals by applying unsupervised clustering to the outputs from the hidden layers of the neural network model.

Results

The deep learning models outperform other statistical models for modeling AD risk. Moreover, the polygenic risk derived from the deep learning models enables the identification of disease-associated biological pathways and the stratification of individuals according to distinct pathological mechanisms.

Conclusion

Our results suggest that deep learning methods are effective for modeling the genetic risks of AD and other diseases, classifying disease risks, and uncovering disease mechanisms.

Plain language summary

Polygenic diseases, such as Alzheimer’s disease (AD), are those caused by the interplay between multiple genetic risk factors. Statistical models can be used to predict disease risk based on a person’s genetic profile. However, there are limitations to existing methods, while emerging methods such as deep learning may improve risk prediction. Deep learning involves computer-based software learning from patterns in data to perform a certain task, e.g. predict disease risk. Here, we test whether deep learning models can help to predict AD risk. Our models not only outperformed existing methods in modeling AD risk, they also allow us to estimate an individual’s risk of AD and determine the biological processes that may be involved in AD. With further testing and optimization, deep learning may be a useful tool to help accurately predict risk of AD and other diseases.

Details

Title
Deep learning-based polygenic risk analysis for Alzheimer’s disease prediction
Author
Zhou, Xiaopu 1   VIAFID ORCID Logo  ; Chen, Yu 2 ; Ip, Fanny C. F. 1 ; Jiang, Yuanbing 3   VIAFID ORCID Logo  ; Cao, Han 4 ; Lv, Ge 5 ; Zhong, Huan 3 ; Chen, Jiahang 5 ; Ye, Tao 2   VIAFID ORCID Logo  ; Chen, Yuewen 2 ; Zhang, Yulin 6 ; Ma, Shuangshuang 6 ; Lo, Ronnie M. N. 4 ; Tong, Estella P. S. 4 ; Weiner, Michael W. 7 ; Aisen, Paul 8 ; Petersen, Ronald 9 ; Jack, Clifford R. 9 ; Jagust, William 10 ; Trojanowski, John Q. 11 ; Toga, Arthur W. 12 ; Beckett, Laurel 13 ; Green, Robert C. 14 ; Saykin, Andrew J. 15 ; Morris, John 16 ; Shaw, Leslie M. 11 ; Khachaturian, Zaven 17 ; Sorensen, Greg 18 ; Kuller, Lew 19 ; Raichle, Marcus 16 ; Paul, Steven 20 ; Davies, Peter 21 ; Fillit, Howard 22 ; Hefti, Franz 23 ; Holtzman, David 16 ; Mesulam, Marek M. 24 ; Potter, William 25 ; Snyder, Peter 26 ; Schwartz, Adam 27 ; Montine, Tom 28 ; Thomas, Ronald G. 28 ; Donohue, Michael 28 ; Walter, Sarah 28 ; Gessert, Devon 28 ; Sather, Tamie 28 ; Jiminez, Gus 28 ; Harvey, Danielle 13 ; Bernstein, Matthew 9 ; Thompson, Paul 29 ; Schuff, Norbert 30 ; Borowski, Bret 9 ; Gunter, Jeff 9 ; Senjem, Matt 9 ; Vemuri, Prashanthi 9 ; Jones, David 9 ; Kantarci, Kejal 9 ; Ward, Chad 9 ; Koeppe, Robert A. 31 ; Foster, Norm 32 ; Reiman, Eric M. 33 ; Chen, Kewei 33 ; Mathis, Chet 34 ; Landau, Susan 10 ; Cairns, Nigel J. 16 ; Householder, Erin 16 ; Taylor-Reinwald, Lisa 16 ; Lee, Virginia 11 ; Korecka, Magdalena 11 ; Figurski, Michal 11 ; Crawford, Karen 12 ; Neu, Scott 12 ; Foroud, Tatiana M. 15 ; Potkin, Steven G. 35 ; Shen, Li 15 ; Faber, Kelley 15 ; Kim, Sungeun 15 ; Nho, Kwangsik 15 ; Thal, Leon 8 ; Buckholtz, Neil 36 ; Albert, Marylyn 37 ; Frank, Richard 38 ; Hsiao, John 36 ; Kaye, Jeffrey 39 ; Quinn, Joseph 39 ; Lind, Betty 39 ; Carter, Raina 39 ; Dolen, Sara 39 ; Schneider, Lon S. 12 ; Pawluczyk, Sonia 12 ; Beccera, Mauricio 12 ; Teodoro, Liberty 12 ; Spann, Bryan M. 12 ; Brewer, James 8 ; Vanderswag, Helen 8 ; Fleisher, Adam 40 ; Heidebrink, Judith L. 31 ; Lord, Joanne L. 31 ; Mason, Sara S. 9 ; Albers, Colleen S. 9 ; Knopman, David 9 ; Johnson, Kris 9 ; Doody, Rachelle S. 41 ; Villanueva-Meyer, Javier 41 ; Chowdhury, Munir 41 ; Rountree, Susan 41 ; Dang, Mimi 41 ; Stern, Yaakov 41 ; Honig, Lawrence S. 41 ; Bell, Karen L. 41 ; Ances, Beau 16 ; Carroll, Maria 16 ; Leon, Sue 16 ; Mintun, Mark A. 16 ; Schneider, Stacy 16 ; Oliver, Angela 16 ; Marson, Daniel 42 ; Griffith, Randall 42 ; Clark, David 42 ; Geldmacher, David 42 ; Brockington, John 42 ; Roberson, Erik 42 ; Grossman, Hillel 43 ; Mitsis, Effie 43 ; de Toledo-Morrell, Leyla 44 ; Shah, Raj C. 44 ; Duara, Ranjan 45 ; Varon, Daniel 45 ; Greig, Maria T. 45 ; Roberts, Peggy 45 ; Onyike, Chiadi 37 ; D’Agostino, Daniel 37 ; Kielb, Stephanie 37 ; Galvin, James E. 46 ; Cerbone, Brittany 46 ; Michel, Christina A. 46 ; Rusinek, Henry 46 ; de Leon, Mony J. 46 ; Glodzik, Lidia 46 ; De Santi, Susan 46 ; Doraiswamy, P. Murali 47 ; Petrella, Jeffrey R. 47 ; Wong, Terence Z. 47 ; Arnold, Steven E. 11 ; Karlawish, Jason H. 11 ; Wolk, David 11 ; Smith, Charles D. 48 ; Jicha, Greg 48 ; Hardy, Peter 48 ; Sinha, Partha 48 ; Oates, Elizabeth 48 ; Conrad, Gary 48 ; Lopez, Oscar L. 19 ; Oakley, MaryAnn 19 ; Simpson, Donna M. 37 ; Porsteinsson, Anton P. 49 ; Goldstein, Bonnie S. 50 ; Martin, Kim 50 ; Makino, Kelly M. 50 ; Ismail, M. Saleem 50 ; Brand, Connie 50 ; Mulnard, Ruth A. 35 ; Thai, Gaby 35 ; McAdams-Ortiz, Catherine 35 ; Womack, Kyle 50 ; Mathews, Dana 50 ; Quiceno, Mary 50 ; Diaz-Arrastia, Ramon 50 ; King, Richard 50 ; Weiner, Myron 50 ; Martin-Cook, Kristen 50 ; DeVous, Michael 50 ; Levey, Allan I. 51 ; Lah, James J. 51 ; Cellar, Janet S. 51 ; Burns, Jeffrey M. 52 ; Anderson, Heather S. 52 ; Swerdlow, Russell H. 52 ; Apostolova, Liana 29 ; Tingus, Kathleen 29 ; Woo, Ellen 29 ; Silverman, Daniel H. S. 29 ; Lu, Po H. 29 ; Bartzokis, George 29 ; Graff-Radford, Neill R. 53 ; Parfitt, Francine 53 ; Kendall, Tracy 53 ; Johnson, Heather 53 ; Farlow, Martin R. 15 ; Hake, Ann Marie 15 ; Matthews, Brandy R. 15 ; Herring, Scott 15 ; Hunt, Cynthia 15 ; van Dyck, Christopher H. 54 ; Carson, Richard E. 54 ; MacAvoy, Martha G. 54 ; Chertkow, Howard 55 ; Bergman, Howard 55 ; Hosein, Chris 55 ; Hsiung, Ging-Yuek Robin 56 ; Feldman, Howard 56 ; Mudge, Benita 56 ; Assaly, Michele 56 ; Bernick, Charles 57 ; Munic, Donna 57 ; Kertesz, Andrew 58 ; Rogers, John 58 ; Trost, Dick 58 ; Kerwin, Diana 24 ; Lipowski, Kristine 24 ; Wu, Chuang-Kuo 24 ; Johnson, Nancy 24 ; Sadowsky, Carl 59 ; Martinez, Walter 59 ; Villena, Teresa 59 ; Turner, Raymond Scott 60 ; Johnson, Kathleen 60 ; Reynolds, Brigid 60 ; Sperling, Reisa A. 14 ; Johnson, Keith A. 14 ; Marshall, Gad 14 ; Frey, Meghan 14 ; Lane, Barton 14 ; Rosen, Allyson 14 ; Tinklenberg, Jared 14 ; Sabbagh, Marwan N. 61 ; Belden, Christine M. 61 ; Jacobson, Sandra A. 61 ; Sirrel, Sherye A. 61 ; Kowall, Neil 61 ; Killiany, Ronald 62 ; Budson, Andrew E. 62 ; Norbash, Alexander 62 ; Johnson, Patricia Lynn 62 ; Allard, Joanne 63 ; Lerner, Alan 64 ; Ogrocki, Paula 64 ; Hudson, Leon 64 ; Fletcher, Evan 13 ; Carmichael, Owen 13 ; Olichney, John 13 ; DeCarli, Charles 13 ; Kittur, Smita 65 ; Borrie, Michael 66 ; Lee, T-Y. 66 ; Bartha, Rob 66 ; Johnson, Sterling 67 ; Asthana, Sanjay 67 ; Carlsson, Cynthia M. 67 ; Preda, Adrian 29 ; Nguyen, Dana 29 ; Tariot, Pierre 32 ; Reeder, Stephanie 32 ; Bates, Vernice 68 ; Capote, Horacio 68 ; Rainka, Michelle 68 ; Scharre, Douglas W. 69 ; Kataki, Maria 69 ; Adeli, Anahita 69 ; Zimmerman, Earl A. 70 ; Celmins, Dzintra 70 ; Brown, Alice D. 70 ; Pearlson, Godfrey D. 71 ; Blank, Karen 71 ; Anderson, Karen 71 ; Santulli, Robert B. 72 ; Kitzmiller, Tamar J. 72 ; Schwartz, Eben S. 72 ; Sink, Kaycee M. 73 ; Williamson, Jeff D. 73 ; Garg, Pradeep 73 ; Watkins, Franklin 73 ; Ott, Brian R. 74 ; Querfurth, Henry 74 ; Tremont, Geoffrey 74 ; Salloway, Stephen 75 ; Malloy, Paul 75 ; Correia, Stephen 75 ; Rosen, Howard J. 7 ; Miller, Bruce L. 7 ; Mintzer, Jacobo 76 ; Spicer, Kenneth 76 ; Bachman, David 76 ; Pasternak, Stephen 58 ; Rachinsky, Irina 58 ; Drost, Dick 58 ; Pomara, Nunzio 77 ; Hernando, Raymundo 77 ; Sarrael, Antero 77 ; Schultz, Susan K. 78 ; Boles Ponto, Laura L. 78 ; Shim, Hyungsub 78 ; Smith, Karen Elizabeth 78 ; Relkin, Norman 20 ; Chaing, Gloria 20 ; Raudin, Lisa 79 ; Smith, Amanda 80 ; Fargher, Kristin 80 ; Raj, Balebail Ashok 80 ; Neylan, Thomas 7 ; Grafman, Jordan 24 ; Davis, Melissa 8 ; Morrison, Rosemary 8 ; Hayes, Jacqueline 7 ; Finley, Shannon 7 ; Friedl, Karl 81 ; Fleischman, Debra 44 ; Arfanakis, Konstantinos 44 ; James, Olga 47 ; Massoglia, Dino 76 ; Fruehling, J. Jay 67 ; Harding, Sandra 67 ; Peskind, Elaine R. 28 ; Petrie, Eric C. 69 ; Li, Gail 69 ; Yesavage, Jerome A. 82 ; Taylor, Joy L. 82 ; Furst, Ansgar J. 82 ; Mok, Vincent C. T. 83   VIAFID ORCID Logo  ; Kwok, Timothy C. Y. 84   VIAFID ORCID Logo  ; Guo, Qihao 85 ; Mok, Kin Y. 86 ; Shoai, Maryam 87 ; Hardy, John 88 ; Chen, Lei 5 ; Fu, Amy K. Y. 1 ; Ip, Nancy Y. 1   VIAFID ORCID Logo 

 The Hong Kong University of Science and Technology, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Kowloon, China (GRID:grid.24515.37) (ISNI:0000 0004 1937 1450); Hong Kong Science Park, Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China (GRID:grid.24515.37) (ISNI:0000 0004 1937 1450); Shenzhen–Hong Kong Institute of Brain Science, Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China (GRID:grid.458489.c) (ISNI:0000 0001 0483 7922) 
 The Hong Kong University of Science and Technology, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Kowloon, China (GRID:grid.24515.37) (ISNI:0000 0004 1937 1450); Shenzhen–Hong Kong Institute of Brain Science, Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China (GRID:grid.458489.c) (ISNI:0000 0001 0483 7922); Shenzhen–Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China (GRID:grid.458489.c) (ISNI:0000 0001 0483 7922) 
 The Hong Kong University of Science and Technology, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Kowloon, China (GRID:grid.24515.37) (ISNI:0000 0004 1937 1450); Hong Kong Science Park, Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China (GRID:grid.24515.37) (ISNI:0000 0004 1937 1450) 
 The Hong Kong University of Science and Technology, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Kowloon, China (GRID:grid.24515.37) (ISNI:0000 0004 1937 1450) 
 The Hong Kong University of Science and Technology, Department of Computer Science and Engineering, Kowloon, China (GRID:grid.24515.37) (ISNI:0000 0004 1937 1450) 
 Shenzhen–Hong Kong Institute of Brain Science, Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China (GRID:grid.458489.c) (ISNI:0000 0001 0483 7922) 
 UC San Francisco, San Francisco, USA (GRID:grid.266102.1) (ISNI:0000 0001 2297 6811) 
 UC San Diego, San Diego, USA (GRID:grid.266100.3) (ISNI:0000 0001 2107 4242) 
 Mayo Clinic, Rochester, USA (GRID:grid.66875.3a) (ISNI:0000 0004 0459 167X) 
10  UC Berkeley, Berkeley, USA (GRID:grid.47840.3f) (ISNI:0000 0001 2181 7878) 
11  UPenn, Philadelphia, USA (GRID:grid.25879.31) (ISNI:0000 0004 1936 8972) 
12  USC, Los Angeles, USA (GRID:grid.42505.36) (ISNI:0000 0001 2156 6853) 
13  UC Davis, Davis, USA (GRID:grid.27860.3b) (ISNI:0000 0004 1936 9684) 
14  Brigham and Women’s Hospital/Harvard Medical School, Boston, USA (GRID:grid.62560.37) (ISNI:0000 0004 0378 8294) 
15  Indiana University, Bloomington, USA (GRID:grid.411377.7) (ISNI:0000 0001 0790 959X) 
16  Washington University in St Louis, St Louis, USA (GRID:grid.4367.6) (ISNI:0000 0001 2355 7002) 
17  UC Davis, Davis, USA (GRID:grid.27860.3b) (ISNI:0000 0004 1936 9684); Prevent Alzheimer’s Disease 2020, Rockville, USA (GRID:grid.468171.d) 
18  Siemens, Munich, Germany (GRID:grid.5406.7) (ISNI:000000012178835X) 
19  University of Pittsburgh, Pittsburgh, USA (GRID:grid.21925.3d) (ISNI:0000 0004 1936 9000) 
20  Cornell University, Weill Cornell Medical College, New York City, USA (GRID:grid.5386.8) (ISNI:000000041936877X) 
21  Albert Einstein College of Medicine of Yeshiva University, Bronx, USA (GRID:grid.251993.5) (ISNI:0000000121791997) 
22  AD Drug Discovery Foundation, New York City, USA (GRID:grid.251993.5) 
23  Acumen Pharmaceuticals, Livermore, USA (GRID:grid.427650.2) 
24  Northwestern University, Evanston and Chicago, USA (GRID:grid.16753.36) (ISNI:0000 0001 2299 3507) 
25  National Institute of Mental Health, Rockville, USA (GRID:grid.416868.5) (ISNI:0000 0004 0464 0574) 
26  Brown University, Providence, USA (GRID:grid.40263.33) (ISNI:0000 0004 1936 9094) 
27  Eli Lilly, Indianapolis, USA (GRID:grid.417540.3) (ISNI:0000 0000 2220 2544) 
28  University of Washington, Seattle, USA (GRID:grid.34477.33) (ISNI:0000000122986657) 
29  UCLA, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718) 
30  UC San Francisco, San Francisco, USA (GRID:grid.266102.1) (ISNI:0000 0001 2297 6811); UC Davis, Davis, USA (GRID:grid.27860.3b) (ISNI:0000 0004 1936 9684) 
31  University of Michigan, Ann Arbor, USA (GRID:grid.214458.e) (ISNI:0000000086837370) 
32  University of Utah, Salt Lake City, USA (GRID:grid.223827.e) (ISNI:0000 0001 2193 0096) 
33  Banner Alzheimer’s Institute, Phoenix, USA (GRID:grid.418204.b) (ISNI:0000 0004 0406 4925) 
34  AD Drug Discovery Foundation, New York City, USA (GRID:grid.418204.b) 
35  UC Irvine, Irvine, USA (GRID:grid.266093.8) (ISNI:0000 0001 0668 7243) 
36  National Institute on Aging, Bethesda, USA (GRID:grid.419475.a) (ISNI:0000 0000 9372 4913) 
37  Johns Hopkins University, Baltimore, USA (GRID:grid.21107.35) (ISNI:0000 0001 2171 9311) 
38  Richard Frank Consulting, Washington, USA (GRID:grid.21107.35) 
39  Oregon Health and Science University, Portland, USA (GRID:grid.5288.7) (ISNI:0000 0000 9758 5690) 
40  UC San Diego, San Diego, USA (GRID:grid.266100.3) (ISNI:0000 0001 2107 4242); Banner Alzheimer’s Institute, Phoenix, USA (GRID:grid.418204.b) (ISNI:0000 0004 0406 4925) 
41  Baylor College of Medicine, Houston, USA (GRID:grid.39382.33) (ISNI:0000 0001 2160 926X) 
42  University of Alabama, Birmingham, USA (GRID:grid.265892.2) (ISNI:0000000106344187) 
43  Mount Sinai School of Medicine, New York City, USA (GRID:grid.59734.3c) (ISNI:0000 0001 0670 2351) 
44  Rush University Medical Center, Chicago, USA (GRID:grid.240684.c) (ISNI:0000 0001 0705 3621) 
45  Wien Center, Miami, USA (GRID:grid.240684.c) 
46  New York University, New York City, USA (GRID:grid.137628.9) (ISNI:0000 0004 1936 8753) 
47  Duke University Medical Center, Durham, USA (GRID:grid.189509.c) (ISNI:0000000100241216) 
48  University of Kentucky, Lexington, USA (GRID:grid.266539.d) (ISNI:0000 0004 1936 8438) 
49  University of Rochester Medical Center, Rochester, USA (GRID:grid.412750.5) (ISNI:0000 0004 1936 9166) 
50  University of Texas Southwestern Medical School, Dallas, USA (GRID:grid.267313.2) (ISNI:0000 0000 9482 7121) 
51  Emory University, Atlanta, USA (GRID:grid.189967.8) (ISNI:0000 0001 0941 6502) 
52  University of Kansas Medical Center, Kansas City, USA (GRID:grid.412016.0) (ISNI:0000 0001 2177 6375) 
53  Mayo Clinic, Jacksonville, USA (GRID:grid.417467.7) (ISNI:0000 0004 0443 9942) 
54  Yale University School of Medicine, New Haven, USA (GRID:grid.47100.32) (ISNI:0000000419368710) 
55  McGill University/Montreal-Jewish General Hospital, Montreal, Canada (GRID:grid.414980.0) (ISNI:0000 0000 9401 2774) 
56  University of British Columbia Clinic for AD & Related Disorders, Vancouver, Canada (GRID:grid.17091.3e) (ISNI:0000 0001 2288 9830) 
57  Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, USA (GRID:grid.239578.2) (ISNI:0000 0001 0675 4725) 
58  St Joseph’s Health Care, London, Canada (GRID:grid.416448.b) (ISNI:0000 0000 9674 4717) 
59  Palm Beach Neurology Premiere Research Institute, Miami, USA (GRID:grid.16753.36) 
60  Georgetown University Medical Center, Washington, USA (GRID:grid.411667.3) (ISNI:0000 0001 2186 0438) 
61  Banner Sun Health Research Institute, Sun City, USA (GRID:grid.414208.b) (ISNI:0000 0004 0619 8759) 
62  Boston University, Boston, USA (GRID:grid.189504.1) (ISNI:0000 0004 1936 7558) 
63  Howard University, Washington, USA (GRID:grid.257127.4) (ISNI:0000 0001 0547 4545) 
64  Case Western Reserve University, Cleveland, USA (GRID:grid.67105.35) (ISNI:0000 0001 2164 3847) 
65  Neurological Care of CNY, Liverpool, USA (GRID:grid.27860.3b) 
66  Parkwood Hospital, London, Canada (GRID:grid.491177.d) 
67  University of Wisconsin, Madison, USA (GRID:grid.28803.31) (ISNI:0000 0001 0701 8607) 
68  Dent Neurologic Institute, Amherst, USA (GRID:grid.417854.b) 
69  Ohio State University, Columbus, USA (GRID:grid.261331.4) (ISNI:0000 0001 2285 7943) 
70  Albany Medical College, Albany, USA (GRID:grid.413558.e) (ISNI:0000 0001 0427 8745) 
71  Olin Neuropsychiatry Research Center, Hartford Hospital, Hartford, USA (GRID:grid.277313.3) (ISNI:0000 0001 0626 2712) 
72  Dartmouth- Hitchcock Medical Center, Lebanon, USA (GRID:grid.413480.a) (ISNI:0000 0004 0440 749X) 
73  Wake Forest University Health Sciences, Winston-Salem, USA (GRID:grid.412860.9) (ISNI:0000 0004 0459 1231) 
74  Rhode Island Hospital, Providence, USA (GRID:grid.240588.3) (ISNI:0000 0001 0557 9478) 
75  Butler Hospital, Providence, USA (GRID:grid.273271.2) (ISNI:0000 0000 8593 9332) 
76  Medical University South Carolina, Charleston, USA (GRID:grid.259828.c) (ISNI:0000 0001 2189 3475) 
77  Nathan Kline Institute, Orangeburg, USA (GRID:grid.250263.0) (ISNI:0000 0001 2189 4777) 
78  University of Iowa College of Medicine, Iowa City, USA (GRID:grid.214572.7) (ISNI:0000 0004 1936 8294) 
79  Prevent Alzheimer’s Disease 2020, Rockville, USA (GRID:grid.468171.d); Cornell University, Weill Cornell Medical College, New York City, USA (GRID:grid.5386.8) (ISNI:000000041936877X) 
80  University of South Florida: USF Health Byrd Alzheimer’s Institute, Tampa, USA (GRID:grid.170693.a) (ISNI:0000 0001 2353 285X) 
81  Department of Defense, Arlington, USA (GRID:grid.420391.d) (ISNI:0000 0004 0478 6223) 
82  Stanford University, Stanford, USA (GRID:grid.168010.e) (ISNI:0000000419368956) 
83  The Chinese University of Hong Kong, Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Division of Neurology, Department of Medicine and Therapeutics, Shatin, China (GRID:grid.10784.3a) (ISNI:0000 0004 1937 0482) 
84  The Chinese University of Hong Kong, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Division of Geriatrics, Department of Medicine and Therapeutics, Shatin, China (GRID:grid.10784.3a) (ISNI:0000 0004 1937 0482) 
85  Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Department of Gerontology, Shanghai, China (GRID:grid.412528.8) (ISNI:0000 0004 1798 5117) 
86  The Hong Kong University of Science and Technology, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Kowloon, China (GRID:grid.24515.37) (ISNI:0000 0004 1937 1450); Hong Kong Science Park, Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China (GRID:grid.24515.37) (ISNI:0000 0004 1937 1450); UCL Queen Square Institute of Neurology, Department of Neurodegenerative Disease, London, UK (GRID:grid.83440.3b) (ISNI:0000000121901201); UK Dementia Research Institute at UCL, London, UK (GRID:grid.83440.3b) (ISNI:0000000121901201) 
87  UCL Queen Square Institute of Neurology, Department of Neurodegenerative Disease, London, UK (GRID:grid.83440.3b) (ISNI:0000000121901201); UK Dementia Research Institute at UCL, London, UK (GRID:grid.83440.3b) (ISNI:0000000121901201) 
88  Hong Kong Science Park, Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China (GRID:grid.24515.37) (ISNI:0000 0004 1937 1450); UCL Queen Square Institute of Neurology, Department of Neurodegenerative Disease, London, UK (GRID:grid.83440.3b) (ISNI:0000000121901201); UK Dementia Research Institute at UCL, London, UK (GRID:grid.83440.3b) (ISNI:0000000121901201); The Hong Kong University of Science and Technology, HKUST Jockey Club Institute for Advanced Study, Kowloon, China (GRID:grid.24515.37) (ISNI:0000 0004 1937 1450) 
Pages
49
Publication year
2023
Publication date
Dec 2023
Publisher
Springer Nature B.V.
e-ISSN
2730664X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2796702854
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.