Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aiming at the problem of poor spatial resolution of low-frequency noise sources in a small-aperture spherical microphone array (SMA), this paper proposes a method for localizing and identifying low-frequency noise sources based on virtual-vector open SMA (‘p+v’ joint processing method of pressure and velocity). Firstly, a virtual open SMA with a larger aperture is obtained using a virtual array extrapolation method. In this method, the virtual SMA and the actual SMA are regarded as a dual-radius SMA, and velocity information is obtained using finite difference elements of the same direction (azimuth and elevation) array of the virtual and actual SMA. At the same time, the sound pressure at the velocity position is obtained using the virtual SMA extrapolation method and the virtual vector array element SMA, whereby both velocity and sound pressure information is obtained. Finally, the vector signal processing technology is introduced into the generalized inverse beamforming algorithm (GIB). After determining the vector transfer function of the ‘p+v’ joint processing mode, a low-frequency-noise-source localization and identification method based on the vector signal processing GIB is proposed. The simulation and experiment results show that a virtual SMA with a large aperture can be obtained using a virtual array extrapolation method, and the GIB with sound pressure and velocity joint processing has a better spatial resolution.

Details

Title
A Low Frequency Noise Source Localization and Identification Method Based on a Virtual Open Spherical Vector Microphone Array
Author
Yang, Boquan 1   VIAFID ORCID Logo  ; Gao, Yuan 1   VIAFID ORCID Logo  ; Guo, Qiang 1   VIAFID ORCID Logo  ; Shi, Shengguo 2   VIAFID ORCID Logo 

 College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China 
 College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China; Key Laboratory of Marine Information Acquisition and Security, Harbin Engineering University, Ministry of Industry and Information Technology, Harbin 150001, China; National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China 
First page
4368
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2799592204
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.