Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Numerical methods, such as finite element or finite difference, have been widely used in the past decades for modeling solid mechanics problems by solving partial differential equations (PDEs). Differently from the traditional computational paradigm employed in numerical methods, physics-informed deep learning approximates the physics domains using a neural network and embeds physics laws to regularize the network. In this work, a physics-informed neural network (PINN) is extended for application to linear elasticity problems that arise in modeling non-uniform deformation for a typical open-holed plate specimen. The main focus will be on investigating the performance of a conventional PINN approach to modeling non-uniform deformation with high stress concentration in relation to solid mechanics involving forward and inverse problems. Compared to the conventional finite element method, our results show the promise of using PINN in modeling the non-uniform deformation of materials with the occurrence of both forward and inverse problems.

Details

Title
Modeling a Typical Non-Uniform Deformation of Materials Using Physics-Informed Deep Learning: Applications to Forward and Inverse Problems
Author
Deng, Yawen 1   VIAFID ORCID Logo  ; Chen, Changchang 2 ; Wang, Qingxin 3 ; Li, Xiaohe 1 ; Zide Fan 1 ; Li, Yunzi 4 

 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China 
 CNPC Engineering Technology R&D Company Limited, Beijing 102206, China 
 China Petroleum Pipeline Engineering Corporation, Langfang 065000, China 
 Space Systems Division, Beijing 100094, China 
First page
4539
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2799600481
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.