Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the thriving development of sensor technology and pervasive computing, sensor-based human activity recognition (HAR) has become more and more widely used in healthcare, sports, health monitoring, and human interaction with smart devices. Inertial sensors were one of the most commonly used sensors in HAR. In recent years, the demand for comfort and flexibility in wearable devices has gradually increased, and with the continuous development and advancement of flexible electronics technology, attempts to incorporate stretch sensors into HAR have begun. In this paper, we propose a two-channel network model based on residual blocks, an efficient channel attention module (ECA), and a gated recurrent unit (GRU) that is capable of the long-term sequence modeling of data, efficiently extracting spatial–temporal features, and performing activity classification. A dataset named IS-Data was designed and collected from six subjects wearing stretch sensors and inertial sensors while performing six daily activities. We conducted experiments using IS-Data and a public dataset called w-HAR to validate the feasibility of using stretch sensors in human action recognition and to investigate the effectiveness of combining flexible and inertial data in human activity recognition, and our proposed method showed superior performance and good generalization performance when compared with the state-of-the-art methods.

Details

Title
Human Activity Recognition Based on Two-Channel Residual–GRU–ECA Module with Two Types of Sensors
Author
Wang, Xun 1 ; Shang, Jie 2   VIAFID ORCID Logo 

 Faculty of Electrical Engineering & Computer Science, Ningbo University, Ningbo 315040, China; [email protected] 
 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315040, China 
First page
1622
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2799614205
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.