Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This work proposes a comparison among GaN and SiC device main parameters measured with a dedicated and low-cost embedded system, employing an STM32 microcontroller designed to the purpose. The system has the advantage to avoid the use of expensive laboratory measurement equipment to test the devices, allowing to obtain their behavior in operating conditions. The following KPIs (Key Performance Indicators) are measured and critically compared: threshold voltage, on-resistance and input capacitance. All the measurements are carried out in a short time interval and on a wide range of switching frequencies, ranging from 10 kHz to 1 MHz. This investigation is focused on the deviation of the figures of merit when the switching frequency changes, since it is crucial for wide-bandgap devices. The devised, low-cost, microcontroller unit allows high flexibility and system portability, while the employed equivalent-time sampling technique overcomes some issues related to the need of high sampling frequency. It allows good performances with common microcontroller embedded AD converters. To validate the proposed system, the obtained results have been compared with the time-domain waveforms acquired with a traditional laboratory oscilloscope and a study of the system’s measurement errors has been carried out. Results show that GaN devices achieve a higher efficiency with respect to SiC devices in the considered range of switching frequencies. The on-resistance exhibited by GaN devices shows, as expected, an increase with frequency, which happens to switching losses, too. On the other hand, GaN devices are more sensitive to parasitic effects and the high dV/dt, due to the reduced switching times, can excite unwanted ringing phenomena.

Details

Title
GaN and SiC Device Characterization by a Dedicated Embedded Measurement System
Author
Vella, Alberto 1 ; Galioto, Giuseppe 1 ; Vitale, Gianpaolo 2   VIAFID ORCID Logo  ; Lullo, Giuseppe 1   VIAFID ORCID Logo  ; Giuseppe Costantino Giaconia 1   VIAFID ORCID Logo 

 Department of Engineering, University of Palermo, Viale delle Scienze, Building 9, 90128 Palermo, Italy; [email protected] (A.V.); [email protected] (G.G.); [email protected] (G.L.); [email protected] (G.C.G.) 
 National Research Council of Italy ICAR, Institute for High Performance Computing and Networking, Via Ugo La Malfa 153, 90146 Palermo, Italy 
First page
1555
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2799616405
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.