Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Low-temperature plasma is a new agricultural green technology, which can improve the yield and quality of rice. How to identify the harvest rice grown by plasma seed treatment plays an important role in the popularization and application of low-temperature plasma in agriculture. This study collected hyperspectral data of harvest rice, including plasma seed treated rice, and constructed a recognition model based on the hyperspectral image (HSI) by 3D ResNet (HSI-3DResNet), which extracts spatial spectral features of HSI data cubes through 3D convolution. In addition, a spectral channels 3D attention module (C3DAM) is proposed, which can extract key features of spectra. Experiments showed that the proposed C3DAM can improve the recognition accuracy of the model to 4.2%, while the size and parameters of the model only increase by 4.1% and 3.8%, respectively. The HSI-3DResNet proposed in this study is superior to other methods with the overall accuracy of 97.47%. At the same time, the algorithm proposed in this paper was also verified on a public dataset.

Details

Title
Recognition of Plasma-Treated Rice Based on 3D Deep Residual Network with Attention Mechanism
Author
Tang, Xiaojiang 1 ; Zhao, Wenhao 1 ; Guo, Junwei 2 ; Li, Baoxia 1 ; Liu, Xin 1 ; Wang, Yuan 1 ; Huang, Feng 2   VIAFID ORCID Logo 

 College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China 
 College of Science, China Agricultural University, Beijing 100083, China 
First page
1686
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2799644035
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.