Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The paper presents a novel numerical approach to the quantitative estimation of the concentration limits for flame acceleration in hydrogen-based mixtures. A series of calculations are carried out for hydrogen–air and hydrogen–oxygen flames in channels. The analysis of the obtained numerical results provided the value of 11 ± 0.25 % hydrogen content in the mixture as a lean concentration limit of flame acceleration that agrees well with the available experimental data. Moreover, the basic physical mechanism responsible for the transition from the steady mode of flame propagation to the accelerated one is distinguished. The mechanism is related to flame stretching in the region of interaction with the boundary layer and the competition between the joint increase in burning rate and heat losses. The novel technique for the estimation of concentration limits of flame acceleration presented here can be applied to assess combustion conditions inside combustors of energy and propulsion systems fed with hydrogen. The results are also useful in estimating explosion and fire risks in hydrogen storage, transport, and utilization facilities as parts of hydrogen energy and propulsion systems.

Details

Title
On the Critical Condition for Flame Acceleration in Hydrogen-Based Mixtures
Author
Kiverin, Alexey  VIAFID ORCID Logo  ; Tyurnin, Alexey  VIAFID ORCID Logo  ; Yakovenko, Ivan  VIAFID ORCID Logo 
First page
2813
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2799659905
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.