Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Septic shock is defined as a subset of sepsis, which is associated with a considerably high mortality risk. The caspase-11 non-canonical inflammasome is sensed and activated by intracellular lipopolysaccharide (LPS) leading to pyroptosis, it plays a critical role in septic shock. However, there are few known drugs that can control caspase-11 non-canonical inflammasome activation. We report here that goitrin, an alkaloid from Radix Isatidis, shows protective effects in LPS-induced septic shock and significant inhibitory effect in caspase-11 non-canonical inflammasome pathway. Male C57BL/6J were injected intraperitoneally with LPS (20 mg/kg) to induce experimental septic shock. The results demonstrated that the survival rates of mice pretreated with goitrin or Toll-like receptor 4 (TLR4) inhibitor TKA-242 increased, and LPS-induced hypothermia and lung damage improved by inhibiting inflammatory response. Elucidating the detailed mechanism, we surprisingly found goitrin is really different from TAK-242, it independent of the TLR4 signal activation, but significantly inhibited the activation of caspase-11 non-canonical inflammasome, including cleaved caspase-11 and N-terminal fragment of gasdermin D (GSDMD-NT). Furthermore, with a nonlethal dose of the TLR3 agonist poly(I:C)-primed and subsequently challenged with LPS to induce caspase-11-mediated lethal septic shock, the efficacy of goitrin had been verified. Those results revealed the effect of goitrin in protective against LPS-induced septic shock via inhibiting caspase-11 non-canonical inflammasome, which provided a new therapeutic strategy for clinical treatment of septic shock.

Details

Title
The Protective Effects of Goitrin on LPS-Induced Septic Shock in C57BL/6J Mice via Caspase-11 Non-Canonical Inflammasome Inhibition
Author
Ruan, Deqing 1 ; Yang, Jingyi 2 ; Luo, Qianfei 3 ; Shi, Yanhong 4 ; Ding, Lili 4 ; Wang, Zhengtao 4 ; Wang, Rui 3 ; Yang, Li 5 

 School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China[email protected] (L.D.); ; Department of Molecular Pharmacology, Yunnan University of Chinese Medicine, Kunming 650500, China 
 School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China[email protected] (L.D.); 
 School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China 
 Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China[email protected] (L.D.); 
 Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China[email protected] (L.D.); ; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China 
First page
2883
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2799729783
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.