Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In recent years, several researchers have focused their studies on the development of sustainable biomaterials using renewable sources, including the incorporation of living biological systems. One of the best biomaterials is bacterial cellulose (BC). There are several ways to produce BC, from using a pure strain to producing the fermented drink kombucha, which has a symbiotic culture of bacteria and yeasts (SCOBY). Studies have shown that the use of agricultural waste can be a low-cost and sustainable way to create BC. This article conducts a literature review to analyze issues related to the creation of BC through kombucha production. The databases used were ScienceDirect, Scopus, Web of Science, and SpringerLink. A total of 42 articles, dated from 2018 to 2022, were referenced to write this review. The findings contributed to the discussion of three topics: (1) The production of BC through food waste (including patents in addition to the scientific literature); (2) Areas of research, sectors, and products that use BC (including research that did not use the kombucha drink, but used food waste as a source of carbon and nitrogen); and (3) Production, sustainability, and circular economy: perspectives, challenges, and trends in the use of BC (including some advantages and disadvantages of BC production through the kombucha drink).

Details

Title
Advances in the Production of Biomaterials through Kombucha Using Food Waste: Concepts, Challenges, and Potential
Author
Anelise Leal Vieira Cubas 1 ; Ana Paula Provin 1   VIAFID ORCID Logo  ; Aguiar Dutra, Ana Regina 1 ; Mouro, Cláudia 2 ; Gouveia, Isabel C 2   VIAFID ORCID Logo 

 Environmental Science Master’s Program, University of Southern Santa Catarina (Unisul), Avenida Pedra Branca, 25, Palhoça 80137270, SC, Brazil 
 FibEnTech R&D—Fiber Materials and Environmental Technologies, University of Beira Interior, Rua Marquês d’Avila e Bolama, 6201-001 Covilhã, Portugal 
First page
1701
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2799741938
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.