Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Most of the available divisible-load scheduling models assume that all servers in networked systems are idle before workloads arrive and that they can remain available online during workload computation. In fact, this assumption is not always valid. Different servers on networked systems may have heterogenous available times. If we ignore the availability constraints when dividing and distributing workloads among servers, some servers may not be able to start processing their assigned load fractions or deliver them on time. In view of this, we propose a new multi-installment scheduling model based on server availability time constraints. To solve this problem, we design an efficient heuristic algorithm consisting of a repair strategy and a local search strategy, by which an optimal load partitioning scheme is derived. The repair strategy guarantees time constraints, while the local search strategy achieves optimality. We evaluate the performance via rigorous simulation experiments and our results show that the proposed algorithm is suitable for solving large-scale scheduling problems employing heterogeneous servers with arbitrary available times. The proposed algorithm is shown to be superior to the existing algorithm in terms of achieving a shorter makespan of workloads.

Details

Title
Maximizing Heterogeneous Server Utilization with Limited Availability Times for Divisible Loads Scheduling on Networked Systems
Author
Wang, Xiaoli 1 ; Bharadwaj Veeravalli 2 ; Song, Xiaobo 3 ; Zhang, Kaiqi 1 

 School of Computer Science and Technology, Xidian University, Xi’an 710071, China 
 Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 119077, Singapore 
 The 20th Research Institute of China Electronics Technology Group Corporation, Xi’an 710068, China 
First page
3550
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2799783473
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.