Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Technical motion recognition in cross-country skiing can effectively help athletes to improve their skiing movements and optimize their skiing strategies. The non-contact acquisition method of the visual sensor has a bright future in ski training. The changing posture of the athletes, the environment of the ski resort, and the limited field of view have posed great challenges for motion recognition. To improve the applicability of monocular optical sensor-based motion recognition in skiing, we propose a monocular posture detection method based on cooperative detection and feature extraction. Our method uses four feature layers of different sizes to simultaneously detect human posture and key points and takes the position deviation loss and rotation compensation loss of key points as the loss function to implement the three-dimensional estimation of key points. Then, according to the typical characteristics of cross-country skiing movement stages and major sub-movements, the key points are divided and the features are extracted to implement the ski movement recognition. The experimental results show that our method is 90% accurate for cross-country skiing movements, which is equivalent to the recognition method based on wearable sensors. Therefore, our algorithm has application value in the scientific training of cross-country skiing.

Details

Title
Optically Non-Contact Cross-Country Skiing Action Recognition Based on Key-Point Collaborative Estimation and Motion Feature Extraction
Author
Jiashuo Qi 1 ; Li, Dongguang 1 ; He, Jian 2 ; Wang, Yu 1 

 Science and Technology on Electromechanical Dynamic Control Laboratory, Beijing Institute of Technology, Beijing 100081, China 
 School of Mechatronic and Electrical Engineering, North University of China, Taiyuan 030051, China 
First page
3639
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2799788791
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.