Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Rapid urbanization poses a threat to various ecosystem services. Beijing has undergone extensive infrastructure development in recent years. The study aims to extract land surface temperature (LST) and land use cover (LUC) data from satellite imagery, identify urban heat island (UHI) areas in Beijing, and determine the correlation between LST, LUC, NDVI, and BUI. It will also investigate the relationship between UHI and built/unbuilt areas, evaluate thermal comfort in Beijing using UTFVI, and assess the ecological quality of different land use types using the Ecological Evaluation Index (EEI). The results can inform urban planning and management in rapidly urbanizing and climate-changing regions. Changes in LUC and other activities affect the distribution of LST. For the study years (2005–2020), the estimated mean LST in Beijing was 24.72 °C, 27.07 °C, 26.22 °C, and 27.03 °C, respectively. A significant positive correlation (r = 0.96 p > 0.005) was found between LST and urban areas with other infrastructures. Geographically weighted regression (GWR) outperformed with Adj R2 > 0.74, suggesting that the extent of an urban heat island (UHI) is strongly dependent on the settlements, LUC composition, size, and terrain of surrounding communities. Urban hotspots in the city were identified and validated using Google Earth imagery. The Ecological Evaluation Index (EEI) value was relatively low compared to other ecosystem-related units. EEI showed a continuous increase of six percent in the most negative categories, indicating an unstable environment. This study concludes that urbanization affects the city’s environment, and study findings would help to regulate the urban ecosystem in Beijing.

Details

Title
Modeling the Impact and Risk Assessment of Urbanization on Urban Heat Island and Thermal Comfort Level of Beijing City, China (2005–2020)
Author
Muhammad Amir Siddique 1   VIAFID ORCID Logo  ; Fan Boqing 2 ; Liu, Dongyun 3 

 School of Landscape Architecture, Beijing Forestry University, Beijing 100107, China; [email protected] (M.A.S.); [email protected] (F.B.); School of Architecture, Tianjin University, Tianjin 300272, China 
 School of Landscape Architecture, Beijing Forestry University, Beijing 100107, China; [email protected] (M.A.S.); [email protected] (F.B.); School of Architecture, Southeast University, Nanjing 210018, China 
 School of Landscape Architecture, Beijing Forestry University, Beijing 100107, China; [email protected] (M.A.S.); [email protected] (F.B.) 
First page
6043
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2799809620
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.