This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
Parkinson’s disease (PD) is associated with motor complications, such as wearing-off and levodopa-induced dyskinesia (LID), which affect about 50% of patients after 5 years of treatment. Their pathophysiology involves presynaptic mechanisms [1] and postsynaptic factors downstream to the nigrostriatal dopaminergic input into the striatum [2]. Moreover, it has been speculated that early compensatory changes in dopamine metabolism, such as an increase in dopamine turnover, could predispose for motor complications in PD [3].
Several cross-sectional studies have tried to elucidate whether genetic variants may influence the susceptibility for LID, but have often yielded inconsistent results possibly due to differences in screening methods and to comparison of data derived from a large variety of genetically and ethnically diverse populations [4]. For example, some investigations into genetic variants of the dopamine receptor D2 (DRD2) gene reported an association with dyskinesia [5–8], whereas others did not identify an association between DRD2 genotypes and the risk for dyskinesia [9–14]. Consequently, a recent systematic review and meta-analysis of the existing studies concluded that the role of genetic factors for individual susceptibility to LID remains unclear and that further studies are required [4].
Using quantitative 18F-fluorodopa PET imaging, we have recently shown that the monoamine oxidase B gene intron 13 polymorphism (MAOB; rs1799836) predicts dopamine turnover in de novo PD with the MAOBCC/(C)/CT genotypes leading to lower dopamine turnover [15], which in turn has been associated with a decreased risk for motor complications [16]. Conversely, functional polymorphisms in dopa-decarboxylase (DDC; rs921451), catechol-O-methyl transferase (COMT; rs4680), and dopamine transporter (DAT; variable number tandem repeats) were not predictive of dopamine turnover in our previous PET study [15]. Thus, we now aimed to analyse in this well-defined, longitudinally followed cohort [15–17] whether common functional polymorphisms of MAOB (rs1799836), COMT (rs4680), DDC (rs921451), and DAT (VNTR) were predictive of motor complications. We hypothesized that MAOBCC/(C)/CT genotypes in the intron 13 polymorphism, which encode lower enzyme activity [18] and hence lower dopamine turnover [15], would be associated with a lower risk for motor complications.
2. Materials and Methods
This is a retrospective analysis of data from a longitudinal study, which included participants with PD from a previous clinical trial [17], who were meticulously followed up over 11 years by movement disorder specialists and underwent genotyping of common polymorphisms of genes involved in dopamine metabolism (Figure 1). Major eligibility criteria of the initial study [17] were age between 40 and 85 years, diagnosis of PD according to UK Brain Bank criteria [19], and a rating on the modified Hoehn and Yahr scale of 1–2.5 [20]. Patients were excluded if they had been exposed to any dopaminergic therapy prior to study inclusion. Follow-up evaluations in our outpatient clinic were performed every three to six months depending on the clinical needs of individual patients.
[figure(s) omitted; refer to PDF]
Motor symptoms and activities of daily living were estimated using the Unified PD Rating Scale (UPDRS), which was assessed by movement disorder trained physicians blinded to the genotyping data. Onset of wearing-off was classified as the first time patients or medical records indicated a predictable recurrence of motor symptoms preceding scheduled doses of antiparkinsonian medication and usually improving after those doses. Onset of LID was defined as the first time patients or treating neurologists noted involuntary movements of face, trunk, or extremities following levodopa intake. Genotyping of the common functional polymorphisms DDC (rs921451), MAOB (rs1799836), COMT (rs4680), and DAT (VNTR) was performed as described previously [15]. The study was approved by the Ethics Committee at TU Dresden (EK91052003) and originally registered with ClinicalTrials.gov (NCT00153972).
Statistical analyses were performed with SPSS software, version 23.0 (SPSS, Chicago, IL). Comparisons of clinical data were made with the unpaired t-test or Mann–Whitney U-test or Fisher exact tests, as appropriate. To examine the risks for motor complications, we used univariate and multivariate Cox proportional hazards models to estimate hazard ratios (HRs) with 95% confidence intervals (95% CIs) and
3. Results
Sufficient datasets were available from 30 patients (20 (67%) males and 10 (33%) females; mean age at PD onset: 59.8 ± 9.1 years; age at baseline: 61.0 ± 9.5 years; disease duration at baseline: 0.3 ± 0.7 years [range: 0.0–3.0]; baseline UPDRS III motor score: 19.3 ± 7.4). Median (interquartile range) follow-up period was 11.6 (11.0–12.3) years. For details on demographic and clinical characteristics of the cohort, refer to Supplementary Table S2. Allele frequencies for all polymorphisms were within the range of frequencies reported in databases, and all genotypes were in the Hardy–Weinberg equilibrium (Supplementary Table S1). At last follow-up, 23 patients (77%) had developed wearing-off, 16 (53%) LID, and 23 (77%) any motor complication. We found no significant differences in demographic, clinical characteristics, initial response to therapy [17], levodopa equivalent daily doses, and PD medication classes between genotype groups (Supplementary Table S2).
Univariate Cox proportional hazard models demonstrated that patients with MAOBCC/(C)/CT genotypes (low/intermediate enzyme activity) had a lower risk for LID, but not for wearing-off or any motor complication, compared to individuals with MAOBTT/(T) genotypes (high enzyme activity) (Table 1). DDC, COMT, and DAT polymorphisms were not predictive of motor complications. Multivariate Cox proportional hazard models adjusting for relevant covariates confirmed these results (Table 1).
Table 1
Cox proportional hazard ratios estimating the risk for motor complications with respect to genotypes in functional polymorphisms associated with lower enzyme/transporter activitya.
Wearing-off | Levodopa-induced dyskinesia | Any motor complication | ||||||||
HR (95% CI)b | Adjusted HR (95% CI)b,c | HR (95% CI)b | Adjusted HR (95% CI)b,c | HR (95% CI)b,c | ||||||
DDCCC/CT (rs921451) | 0.569 (0.218–1.488) | 0.250 | 0.633 (0.240–1.668) | 0.355 | 0.699 (0.218–2.244) | 0.548 | 0.801 (0.237–2.705) | 0.721 | 0.514 (0.196–1.350) | 0.177 |
MAOBCC/(C)/CT (rs1799836) | 0.566 (0.242–1.322) | 0.189 | 0.197 (0.563–1.347) | 0.197 | 0.264 (0.089–0.787) | 0.012 | 0.142 (0.039–0.520) | 0.003 | 0.554 (0.235–1.304) | 0.176 |
COMTAA/AG (rs4680) | 1.216 (0.410–3.607) | 0.725 | 1.277 (0.430–3.789) | 0.660 | 5.526 (0.725–42.095) | 0.099 | 5.298 (0.677–41.484) | 0.112 | 1.280 (0.432–3.795) | 0.656 |
DAT≤9/≤10 (VNTR) | 0.869 (0.370–2.039) | 0.746 | 1.081 (0.452–2.582) | 0.861 | 0.943 (0.335–2.655) | 0.912 | 1.108 (0.372–3.295) | 0.854 | 0.994 (0.422–2.338) | 0.988 |
HR: hazard ratio; 95% CI: 95% confidence interval. aPatients were grouped into low/intermediate enzyme/transporter activity (DDCCC/CT (n = 23); MAOBCC/(C)/CT (n = 16); COMTAA/AG (n = 23); DAT≤9/≤10 (n = 13)) and high enzyme/transporter activity (DDCTT (n = 7); MAOBTT/(T) (n = 14); COMTGG (n = 7); DAT10/10 (n = 17)). Refer to Supplementary Table S1 for details. bAn HR < 1 indicates smaller risk for motor complications with genotypes resulting in low/intermediate enzyme/transporter activity (DDCCC/CT rs921451 genotype; MAOBCC/(C)/CT rs1799836 genotype; COMTAA/AG rs4680 genotype; DAT≤9/≤10 V NTR genotype). cAdjustment of HR for relevant covariates was performed by using multivariate Cox proportional hazard models using a stepwise selection process retaining as final variables disease duration at baseline for the prediction of wearing-off, gender, disease duration at baseline, and MAOB-I therapy for levodopa-induced dyskinesia and no variables for any motor complication (no adjustment needed).
Kaplan–Meier curves revealed that patients with MAOBCC/(C)/CT genotypes (intermediate/low enzyme activity) had a higher chance to remain free from LID, whereas individuals with MAOBTT/(T) genotypes (high enzyme activity) were more likely to experience LID earlier (Figure 2). These effects were again not observed for the occurrence of wearing-off and any motor complication (Figures 2(a) and 2(c)).
[figure(s) omitted; refer to PDF]
4. Discussion
This is the first longitudinal study to demonstrate that the MAOB rs1799836 polymorphism predicts the development of LID in PD, with a lower risk observed in patients carrying the MAOBCC/(C)/CT genotype (associated with low/intermediate brain enzyme activity). In contrast, other functional gene polymorphisms involved in the dopamine metabolism were not predictive of motor complications.
By applying a longitudinal study design in meticulously followed and evenly matched patients, we found that MAOBTT/(T) genotypes in rs1799836 polymorphism encoding for higher MAOB activity predispose for earlier LID. Our results are in agreement with a cross-sectional, retrospective study from Brazil that reported a higher risk for LID with the MAOBAA/(A) genotype (corresponding to MAOBTT/(T) in our study), but was restricted to levodopa-treated patients [24]. Another cross-sectional study from China found a higher frequency of the MAOBAG genotype (corresponding to MAOBCT in our study) in dyskinetic patients, but failed to identify differences in allele frequencies [25]. However, dyskinetic patients in that study had a younger age of onset, longer disease duration, and higher UPDRS part III scores, which are known risk factors for dyskinesia and could only be adjusted for statistically. Using retrospective clinical data from medical records of 110 Asian patients with PD, a recent Japanese study conversely to our findings suggested that PD patients carrying the G allele (AG or GG, corresponding to MAOBCC/(C)/CT in our study) exhibit an approximately 3-fold increase in the occurrence of dyskinesia [26]. However, there was a nonsignificant trend (
Biochemical data and previous PET data from our cohort help to elucidate potential mechanisms, which could mediate the influence of the MAOB rs1799836 genotype on the time to onset of LID. MAOBCC/(C)/CT genotypes correlate with low/intermediate enzyme activity in human brain tissue [18] and with low putaminal dopamine turnover in early PD as directly measured by 18F-fluorodopa PET [15]. Extensively elevated dopamine turnover has been discussed as an early disease-intrinsic compensatory mechanism leading to imbalance between dopamine synthesis, storage, and release, subsequently to more prominent fluctuations in dopamine concentration and thus greater propensity for motor complications [3]. In line with our previous results showing no influence of polymorphisms in COMT (rs4680), DAT (VNTR), and DDC (rs921451) on dopamine turnover in de novo PD [15], we did not observe any associations between these polymorphisms and motor complications. It is thus likely that the effects of the MAOB rs1799836 genotype on the onset of levodopa-induced motor complications are mediated by a modulation of compensatory changes in dopamine metabolism.
Our study has several limitations. First, the use of a relatively small cohort from a single centre and the retrospective nature of our study may limit generalizability. On the contrary, our results were obtained from a meticulously followed up and well-defined patient cohort with available 18F-fluorodopa PET data, exclusively allowing for mechanistic considerations of genotype effects. Secondly, we were not able to control for different medication regimes during the observation period, since the treatment was open-label after the initial allocation. However, we did not find any differences in the pharmacological treatment between the genotype groups, which argues against a differential effect of medication on study outcomes.
5. Conclusion
In conclusion, our study suggests that the functional MAOB gene intron 13 polymorphism could predict the development of LID. However, it is essential that these results are confirmed by other studies on larger cohorts, especially as our study cohort is relatively small and the results of previous genetic studies have been conflicting. Individual assessment of this polymorphism might be helpful for early risk stratification and could aid patient-tailored therapeutic strategies to prevent or delay motor complications in the course of PD.
Ethical Approval
The study was approved by the Ethics Committee at TU Dresden (EK91052003) and originally registered with ClinicalTrials.gov (NCT00153972).
Consent
All participants agreed to participate in the study and provided written informed consent.
Disclosure
The financial sponsors of the study had no role in the study design, data collection, data analysis, data interpretation, or writing of the report.
Authors’ Contributions
ML and AS designed and conceptualized the study, performed analysis and interpretation of the data, and drafted and revised the manuscript for intellectual content. GM and J-CC provided the study material, performed analysis and interpretation of data, and revised the manuscript for intellectual content. WH, DH, MW, JM, HR, and AH provided the study material and revised the manuscript for intellectual content.
[1] M. A. Cenci, "Presynaptic mechanisms of l-DOPA-induced dyskinesia: the findings, the debate, and the therapeutic implications," Frontiers in Neurology, vol. 5,DOI: 10.3389/fneur.2014.00242, 2014.
[2] G. Linazasoro, "Pathophysiology of motor complications in Parkinson disease: postsynaptic mechanisms are crucial," Archives of Neurology, vol. 64 no. 1, pp. 137-140, DOI: 10.1001/archneur.64.1.137, 2007.
[3] V. Sossi, R. de la Fuente-Fernández, M. Schulzer, J. Adams, J. Stoessl, "Age-related differences in levodopa dynamics in Parkinson’s: implications for motor complications," Brain: A Journal of Neurology, vol. 129 no. 4, pp. 1050-1058, DOI: 10.1093/brain/awl028, 2006.
[4] M. Falla, A. Di Fonzo, A. A. Hicks, P. P. Pramstaller, G. Fabbrini, "Genetic variants in levodopa-induced dyskinesia (LID): a systematic review and meta-analysis," Parkinsonism & Related Disorders, vol. 84, pp. 52-60, DOI: 10.1016/j.parkreldis.2021.01.020, 2021.
[5] R. L. Oliveri, G. Annesi, M. Zappia, D. Civitelli, R. Montesanti, D. Branca, G. Nicoletti, P. Spadafora, A. A. Pasqua, R. Cittadella, V. Andreoli, A. Gambardella, U. Aguglia, A. Quattrone, "Dopamine D2 receptor gene polymorphism and the risk of levodopa-induced dyskinesias in PD," Neurology, vol. 53 no. 7,DOI: 10.1212/wnl.53.7.1425, 1999.
[6] C. D. J. Kusters, K. C. Paul, I. Guella, J. M. Bronstein, J. S. Sinsheimer, M. J. Farrer, B. R. Ritz, "Dopamine receptors and BDNF -haplotypes predict dyskinesia in Parkinson’s disease," Parkinsonism & Related Disorders, vol. 47, pp. 39-44, DOI: 10.1016/j.parkreldis.2017.11.339, 2018.
[7] J. A. Strong, A. Dalvi, F. J. Revilla, A. Sahay, F. J. Samaha, J. A. Welge, J. Gong, M. Gartner, X. Yue, L. Yu, "Genotype and smoking history affect risk of levodopa-induced dyskinesias in Parkinson’s disease," Movement Disorders, vol. 21 no. 5, pp. 654-659, DOI: 10.1002/mds.20785, 2006.
[8] M. Rieck, A. F. Schumacher-Schuh, V. Altmann, C. L. Francisconi, P. T. Fagundes, T. L. Monte, S. M. Callegari-Jacques, C. R. Rieder, M. H. Hutz, "DRD2 haplotype is associated with dyskinesia induced by levodopa therapy in Parkinson’s disease patients," Pharmacogenomics, vol. 13 no. 15, pp. 1701-1710, DOI: 10.2217/pgs.12.149, 2012.
[9] M. Zappia, G. Annesi, G. Nicoletti, G. Arabia, F. Annesi, D. Messina, P. Pugliese, P. Spadafora, P. Tarantino, S. Carrideo, D. Civitelli, E. V. De Marco, I. C. Cirò-Candiano, A. Gambardella, A. Quattrone, "Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson disease: an exploratory study," Archives of Neurology, vol. 62 no. 4, pp. 601-605, DOI: 10.1001/archneur.62.4.601, 2005.
[10] C. Comi, M. Ferrari, F. Marino, L. Magistrelli, R. Cantello, G. Riboldazzi, M. L. Bianchi, G. Bono, M. Cosentino, "Polymorphisms of dopamine receptor genes and risk of L-dopa-induced dyskinesia in Parkinson’s disease," International Journal of Molecular Sciences, vol. 18 no. 2,DOI: 10.3390/ijms18020242, 2017.
[11] N. Kaplan, A. Vituri, A. D. Korczyn, O. S. Cohen, R. Inzelberg, G. Yahalom, E. Kozlova, R. Milgrom, Y. Laitman, E. Friedman, S. Rosset, S. Hassin-Baer, "Sequence variants in SLC6A3, DRD2, and BDNF genes and time to levodopa-induced dyskinesias in Parkinson’s disease," Journal of Molecular Neuroscience, vol. 53 no. 2, pp. 183-188, DOI: 10.1007/s12031-014-0276-9, 2014.
[12] R. Kaiser, A. Hofer, A. Grapengiesser, T. Gasser, A. Kupsch, I. Roots, J. Brockmoller, "L -dopa-induced adverse effects in PD and dopamine transporter gene polymorphism," Neurology, vol. 60 no. 11, pp. 1750-1755, DOI: 10.1212/01.wnl.0000068009.32067.a1, 2003.
[13] J.-Y. Lee, J. Cho, E.-K. Lee, S.-S. Park, B. S. Jeon, "Differential genetic susceptibility in diphasic and peak-dose dyskinesias in Parkinson’s disease," Movement Disorders, vol. 26 no. 1, pp. 73-79, DOI: 10.1002/mds.23400, 2011.
[14] E. U. D. Dos Santos, T. F. Sampaio, A. D. Tenório dos Santos, F. C. Bezerra Leite, R. C. da Silva, S. Crovella, A. G. C. Asano, N. M. J. Asano, P. R. E. de Souza, "The influence of SLC6A3 and DRD2 polymorphisms on levodopa-therapy in patients with sporadic Parkinson’s disease," Journal of Pharmacy and Pharmacology, vol. 71 no. 2, pp. 206-212, DOI: 10.1111/jphp.13031, 2019.
[15] M. Löhle, G. Mangone, M. Wolz, B. Beuthien-Baumann, L. Oehme, J. van den Hoff, J. Kotzerke, H. Reichmann, J. C. Corvol, A. Storch, "Functional monoamine oxidase B gene intron 13 polymorphism predicts putaminal dopamine turnover in de novo Parkinson’s disease," Movement Disorders: Official Journal of the Movement Disorder Society, vol. 33 no. 9, pp. 1496-1501, DOI: 10.1002/mds.27466, 2018.
[16] M. Löhle, J. Mende, M. Wolz, B. Beuthien-Baumann, L. Oehme, J. van den Hoff, J. Kotzerke, H. Reichmann, A. Storch, "Putaminal dopamine turnover in de novo Parkinson disease predicts later motor complications," Neurology, vol. 86 no. 3, pp. 231-240, DOI: 10.1212/wnl.0000000000002286, 2016.
[17] A. Storch, M. Wolz, B. Beuthien-Baumann, M. Lohle, B. Herting, U. Schwanebeck, L. Oehme, J. van den Hoff, M. Perick, X. Grahlert, J. Kotzerke, H. Reichmann, "Effects of dopaminergic treatment on striatal dopamine turnover in de novo Parkinson disease," Neurology, vol. 80 no. 19, pp. 1754-1761, DOI: 10.1212/wnl.0b013e3182918c2d, 2013.
[18] J. Balciuniene, L. Emilsson, L. Oreland, U. Pettersson, E. Jazin, "Investigation of the functional effect of monoamine oxidase polymorphisms in human brain," Human Genetics, vol. 110 no. 1,DOI: 10.1007/s00439-001-0652-8, 2002.
[19] A. J. Hughes, S. E. Daniel, L. Kilford, A. J. Lees, "Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases," Journal of Neurology, Neurosurgery & Psychiatry, vol. 55 no. 3, pp. 181-184, DOI: 10.1136/jnnp.55.3.181, 1992.
[20] M. M. Hoehn, M. D. Yahr, "Parkinsonism: onset, progression, and mortality," Neurology, vol. 17 no. 5,DOI: 10.1212/wnl.17.5.427, 1967.
[21] J. Y. Hong, J. S. Oh, I. Lee, M. K. Sunwoo, J. H. Ham, J. E. Lee, Y. H. Sohn, J. S. Kim, P. H. Lee, "Presynaptic dopamine depletion predicts levodopa-induced dyskinesia in de novo Parkinson disease," Neurology, vol. 82 no. 18, pp. 1597-1604, DOI: 10.1212/wnl.0000000000000385, 2014.
[22] C. Warren Olanow, K. Kieburtz, O. Rascol, W. Poewe, A. H. Schapira, M. Emre, H. Nissinen, M. Leinonen, F. Stocchi, "Factors predictive of the development of levodopa-induced dyskinesia and wearing-off in Parkinson’s disease," Movement Disorders, vol. 28 no. 8, pp. 1064-1071, DOI: 10.1002/mds.25364, 2013.
[23] A.-M. A. Wills, S. Eberly, M. Tennis, A. E. Lang, S. Messing, D. Togasaki, C. M. Tanner, C. Kamp, J.-F. Chen, D. Oakes, M. P. McDermott, M. A. Schwarzschild, "Caffeine consumption and risk of dyskinesia in CALM-PD," Movement Disorders, vol. 28 no. 3, pp. 380-383, DOI: 10.1002/mds.25319, 2013.
[24] T. F. Sampaio, E. U. D. Dos Santos, G. D. C. de Lima, R. S. G. Dos Anjos, R. C. da Silva, A. G. C. Asano, N. M. J. Asano, S. Crovella, P. R. E. de Souza, "MAO-B and COMT genetic variations associated with levodopa treatment response in patients with Parkinson’s disease," The Journal of Clinical Pharmacology, vol. 58 no. 7, pp. 920-926, DOI: 10.1002/jcph.1096, 2018.
[25] H. Hao, M. Shao, J. An, C. Chen, X. Feng, S. Xie, Z. Gu, P. Chan, Chinese Parkinson Study Group, "Association of Catechol-O-Methyltransferase and monoamine oxidase B gene polymorphisms with motor complications in Parkinson’s disease in a Chinese population," Parkinsonism & Related Disorders, vol. 20 no. 10, pp. 1041-1045, DOI: 10.1016/j.parkreldis.2014.06.021, 2014.
[26] S. Kakinuma, M. Beppu, S. Sawai, A. Nakayama, S. Hirano, Y. Yamanaka, T. Yamamoto, C. Masafumi, X. Aisihaer, A. Aersilan, Y. Gao, K. Sato, I. Sakae, T. Ishige, M. Nishimura, K. Matsushita, M. Satoh, F. Nomura, S. Kuwabara, T. Tanaka, "Monoamine oxidase B rs1799836 G allele polymorphism is a risk factor for early development of levodopa-induced dyskinesia in Parkinson’s disease," eNeurologicalSci, vol. 19,DOI: 10.1016/j.ensci.2020.100239, 2020.
[27] L. Greenbaum, S. Goldwurm, P. Zozulinsky, T. Lifschytz, O. S. Cohen, G. Yahalom, R. Cilia, S. Tesei, R. Asselta, R. Inzelberg, Y. Kohn, S. Hassin-Baer, B. Lerer, "Do tardive dyskinesia and L-dopa induced dyskinesia share common genetic risk factors? An exploratory study," Journal of Molecular Neuroscience, vol. 51 no. 2, pp. 380-388, DOI: 10.1007/s12031-013-0020-x, 2013.
[28] M. Bialecka, M. Drozdzik, G. Klodowska-Duda, K. Honczarenko, B. Gawronska-Szklarz, G. Opala, J. Stankiewicz, "The effect of monoamine oxidase B (MAOB) and catechol-O-methyltransferase (COMT) polymorphisms on levodopa therapy in patients with sporadic Parkinson’s disease," Acta Neurologica Scandinavica, vol. 110 no. 4, pp. 260-266, DOI: 10.1111/j.1600-0404.2004.00315.x, 2004.
[29] A. Torkaman-Boutorabi, G. A. Shahidi, S. Choopani, M. Rezvani, K. Pourkosary, M. Golkar, M. R. Zarrindast, "The catechol-O-methyltransferase and monoamine oxidase B polymorphisms and levodopa therapy in the Iranian patients with sporadic Parkinson’s disease," Acta Neurobiologiae Experimantalis, vol. 72 no. 3, pp. 272-282, 2012.
[30] P. Cheshire, K. Bertram, H. Ling, S. S. O’Sullivan, G. Halliday, C. McLean, J. Bras, T. Foltynie, E. Storey, D. R. Williams, "Influence of single nucleotide polymorphisms in COMT, MAO-A and BDNF genes on dyskinesias and levodopa use in Parkinson’s disease," Neurodegenerative Diseases, vol. 13 no. 1, pp. 24-28, DOI: 10.1159/000351097, 2014.
[31] L. Rivera-Calimlim, D. K. Reilly, "Difference in erythrocyte catechol-O-methyltransferase activity between orientals and caucasians: difference in levodopa tolerance," Clinical Pharmacology & Therapeutics, vol. 35 no. 6, pp. 804-809, DOI: 10.1038/clpt.1984.116, 1984.
[32] L. M. L. de Lau, D. Verbaan, J. Marinus, P. Heutink, J. J. van Hilten, "Catechol-O-methyltransferase Val158Met and the risk of dyskinesias in Parkinson’s disease," Movement Disorders, vol. 27 no. 1, pp. 132-135, DOI: 10.1002/mds.23805, 2012.
[33] C. Purcaro, N. Vanacore, F. Moret, M. E. Di Battista, A. Rubino, S. Pierandrei, M. Lucarelli, G. Meco, F. Fattapposta, E. Pascale, "DAT gene polymorphisms (rs28363170, rs393795) and levodopa-induced dyskinesias in Parkinson’s disease," Neuroscience Letters, vol. 690, pp. 83-88, DOI: 10.1016/j.neulet.2018.10.021, 2019.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright © 2022 Matthias Löhle et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/
Abstract
Identification of individual risk factors for motor complications in Parkinson’s disease (PD) can help to guide personalised medical treatment, particularly since treatment options are still limited. To determine whether common functional gene polymorphisms in the dopamine metabolism predict the onset of motor complications in PD, we performed a retrospective, observer-blinded follow-up study of 30 PD patients who underwent genotyping of dopa-decarboxylase (DDC; rs921451), monoamine oxidase B (MAOB; rs1799836), catechol-O-methyltransferase (COMT; rs4680), and dopamine transporter (DAT; variable number tandem repeat) polymorphisms. Onset of wearing-off and dyskinesias was determined by blinded clinical assessments. Predictive values of genotypes for motor complications were evaluated using Cox proportional hazard models. During a median follow-up time of 11.6 years, 23 (77%) of 30 PD patients developed wearing-off, 16 (53%) dyskinesias, and 23 (77%) any motor complication. The MAOB (rs1799836) polymorphism predicted development of dyskinesias with MAOBCC/(C)/CT genotypes (resulting in low/intermediate brain enzyme activity) being associated with lower hazard ratios (unadjusted HR [95% CI]: 0.264 [0.089–0.787];
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details







1 Department of Neurology, University of Rostock, Rostock, Germany; German Centre for Neurodegenerative Diseases (DZNE) Rostock, Rostock, Germany
2 Sorbonne Université, INSERM UMRS1127 and CIC-1422, CNRS UMR7225, Assistance Publique Hôpitaux de Paris, ICM, Department of Neurology, Hôpital Pitié-Salpêtrière, Paris, France
3 Department of Neurology, University of Rostock, Rostock, Germany; Department of Neurology, Technische Universität Dresden, Dresden, Germany
4 Department of Neurology, Technische Universität Dresden, Dresden, Germany
5 Department of Neurology, Elblandklinikum Meißen, Meissen, Germany
6 Department of Neurology, Technische Universität Dresden, Dresden, Germany, Heinz Reichmann
7 Department of Neurology, University of Rostock, Rostock, Germany; Department of Neurology, Technische Universität Dresden, Dresden, Germany; Section for Translational Neurodegeneration “Albrecht Kossel”, Department of Neurology, University of Rostock, Rostock, Germany