It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We present a novel strategy aimed at restoring correct convergence in complex Langevin simulations. The central idea is to incorporate system-specific prior knowledge into the simulations, in order to circumvent the NP-hard sign problem. In order to do so, we modify complex Langevin using kernels and propose the use of modern auto-differentiation methods to learn optimal kernel values. The optimization process is guided by functionals encoding relevant prior information, such as symmetries or Euclidean correlator data. Our approach recovers correct convergence in the non-interacting theory on the Schwinger-Keldysh contour for any real-time extent. For the strongly coupled quantum anharmonic oscillator we achieve correct convergence up to three-times the real-time extent of the previous benchmark study. An appendix sheds light on the fact that for correct convergence not only the absence of boundary terms, but in addition the correct Fokker-Plank spectrum is crucial.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer