It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Biguanides and sulfonylurea are two classes of anti-diabetic medications that have commonly been prescribed all around the world. Diagnosis of biguanide and sulfonylurea exposures is based on history taking and physical examination; thus, physicians might misdiagnose these two different clinical settings. We aimed to conduct a study to develop a model based on decision tree analysis to help physicians better diagnose these poisoning cases.
Methods
The National Poison Data System was used for this six-year retrospective cohort study.The decision tree model, common machine learning models multi layers perceptron, stochastic gradient descent (SGD), Adaboosting classiefier, linear support vector machine and ensembling methods including bagging, voting and stacking methods were used. The confusion matrix, precision, recall, specificity, f1-score, and accuracy were reported to evaluate the model’s performance.
Results
Of 6183 participants, 3336 patients (54.0%) were identified as biguanides exposures, and the remaining were those with sulfonylureas exposures. The decision tree model showed that the most important clinical findings defining biguanide and sulfonylurea exposures were hypoglycemia, abdominal pain, acidosis, diaphoresis, tremor, vomiting, diarrhea, age, and reasons for exposure. The specificity, precision, recall, f1-score, and accuracy of all models were greater than 86%, 89%, 88%, and 88%, respectively. The lowest values belong to SGD model. The decision tree model has a sensitivity (recall) of 93.3%, specificity of 92.8%, precision of 93.4%, f1_score of 93.3%, and accuracy of 93.3%.
Conclusion
Our results indicated that machine learning methods including decision tree and ensembling methods provide a precise prediction model to diagnose biguanides and sulfonylureas exposure.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer