It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Getting access to administrative health data for research purposes is a difficult and time-consuming process due to increasingly demanding privacy regulations. An alternative method for sharing administrative health data would be to share synthetic datasets where the records do not correspond to real individuals, but the patterns and relationships seen in the data are reproduced. This paper assesses the feasibility of generating synthetic administrative health data using a recurrent deep learning model. Our data comes from 120,000 individuals from Alberta Health’s administrative health database. We assess how similar our synthetic data is to the real data using utility assessments that assess the structure and general patterns in the data as well as by recreating a specific analysis in the real data commonly applied to this type of administrative health data. We also assess the privacy risks associated with the use of this synthetic dataset. Generic utility assessments that used Hellinger distance to quantify the difference in distributions between real and synthetic datasets for event types (0.027), attributes (mean 0.0417), Markov transition matrices (order 1 mean absolute difference: 0.0896, sd: 0.159; order 2: mean Hellinger distance 0.2195, sd: 0.2724), the Hellinger distance between the joint distributions was 0.352, and the similarity of random cohorts generated from real and synthetic data had a mean Hellinger distance of 0.3 and mean Euclidean distance of 0.064, indicating small differences between the distributions in the real data and the synthetic data. By applying a realistic analysis to both real and synthetic datasets, Cox regression hazard ratios achieved a mean confidence interval overlap of 68% for adjusted hazard ratios among 5 key outcomes of interest, indicating synthetic data produces similar analytic results to real data. The privacy assessment concluded that the attribution disclosure risk associated with this synthetic dataset was substantially less than the typical 0.09 acceptable risk threshold. Based on these metrics our results show that our synthetic data is suitably similar to the real data and could be shared for research purposes thereby alleviating concerns associated with the sharing of real data in some circumstances.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer