Abstract

Background

Expression quantitative trait loci (eQTL) studies show how genetic variants affect downstream gene expression. Single-cell data allows reconstruction of personalized co-expression networks and therefore the identification of SNPs altering co-expression patterns (co-expression QTLs, co-eQTLs) and the affected upstream regulatory processes using a limited number of individuals.

Results

We conduct a co-eQTL meta-analysis across four scRNA-seq peripheral blood mononuclear cell datasets using a novel filtering strategy followed by a permutation-based multiple testing approach. Before the analysis, we evaluate the co-expression patterns required for co-eQTL identification using different external resources. We identify a robust set of cell-type-specific co-eQTLs for 72 independent SNPs affecting 946 gene pairs. These co-eQTLs are replicated in a large bulk cohort and provide novel insights into how disease-associated variants alter regulatory networks. One co-eQTL SNP, rs1131017, that is associated with several autoimmune diseases, affects the co-expression of RPS26 with other ribosomal genes. Interestingly, specifically in T cells, the SNP additionally affects co-expression of RPS26 and a group of genes associated with T cell activation and autoimmune disease. Among these genes, we identify enrichment for targets of five T-cell-activation-related transcription factors whose binding sites harbor rs1131017. This reveals a previously overlooked process and pinpoints potential regulators that could explain the association of rs1131017 with autoimmune diseases.

Conclusion

Our co-eQTL results highlight the importance of studying context-specific gene regulation to understand the biological implications of genetic variation. With the expected growth of sc-eQTL datasets, our strategy and technical guidelines will facilitate future co-eQTL identification, further elucidating unknown disease mechanisms.

Details

Title
Identification of genetic variants that impact gene co-expression relationships using large-scale single-cell data
Author
Li, Shuang; Schmid, Katharina T; de Vries, Dylan H; Korshevniuk, Maryna; Losert, Corinna; Oelen, Roy; van Blokland, Irene V; Groot, Hilde E; Swertz, Morris A; Pim van der Harst; Harm-Jan Westra; Monique G.P. van der Wijst; Heinig, Matthias; Franke, Lude
Pages
1-37
Section
Research
Publication year
2023
Publication date
2023
Publisher
BioMed Central
ISSN
14747596
e-ISSN
1474760X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2803038380
Copyright
© 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.