It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Acute myeloid leukemia (AML) is a deadly hematological malignancy. Cellular morphology detection of bone marrow smears based on the French–American–British (FAB) classification system remains an essential criterion in the diagnosis of hematological malignancies. However, the diagnosis and discrimination of distinct FAB subtypes of AML obtained from bone marrow smear images are tedious and time-consuming. In addition, there is considerable variation within and among pathologists, particularly in rural areas, where pathologists may not have relevant expertise. Here, we established a comprehensive database encompassing 8245 bone marrow smear images from 651 patients based on a retrospective dual-center study between 2010 and 2021 for the purpose of training and testing. Furthermore, we developed AMLnet, a deep-learning pipeline based on bone marrow smear images, that can discriminate not only between AML patients and healthy individuals but also accurately identify various AML subtypes. AMLnet achieved an AUC of 0.885 at the image level and 0.921 at the patient level in distinguishing nine AML subtypes on the test dataset. Furthermore, AMLnet outperformed junior human experts and was comparable to senior experts on the test dataset at the patient level. Finally, we provided an interactive demo website to visualize the saliency maps and the results of AMLnet for aiding pathologists’ diagnosis. Collectively, AMLnet has the potential to serve as a fast prescreening and decision support tool for cytomorphological pathologists, especially in areas where pathologists are overburdened by medical demands as well as in rural areas where medical resources are scarce.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer