It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a worldwide pandemic with over 627 million cases and over 6.5 million deaths. It was reported that smoking-related chronic obstructive pulmonary disease (COPD) might be a crucial risk for COVID-19 patients to develop severe condition. As cigarette smoke (CS) is the major risk factor for COPD, we hypothesize that barrier dysfunction and an altered cytokine response in CS-exposed airway epithelial cells may contribute to increased SARS-CoV-2-induced immune response that may result in increased susceptibility to severe disease. The aim of this study was to evaluate the role of CS on SARS-CoV-2-induced immune and inflammatory responses, and epithelial barrier integrity leading to airway epithelial damage.
Methods
Primary human airway epithelial cells were differentiated under air-liquid interface culture. Cells were then exposed to cigarette smoke medium (CSM) before infection with SARS-CoV-2 isolated from a local patient. The infection susceptibility, morphology, and the expression of genes related to host immune response, airway inflammation and damages were evaluated.
Results
Cells pre-treated with CSM significantly caused higher replication of SARS-CoV-2 and more severe SARS-CoV-2-induced cellular morphological alteration. CSM exposure caused significant upregulation of long form angiotensin converting enzyme (ACE)2, a functional receptor for SARS-CoV-2 viral entry, transmembrane serine protease (TMPRSS)2 and TMPRSS4, which cleave the spike protein of SARS-CoV-2 to allow viral entry, leading to an aggravated immune response via inhibition of type I interferon pathway. In addition, CSM worsened SARS-CoV-2-induced airway epithelial cell damage, resulting in severe motile ciliary disorder, junctional disruption and mucus hypersecretion.
Conclusion
Smoking led to dysregulation of host immune response and cell damage as seen in SARS-CoV-2-infected primary human airway epithelia. These findings may contribute to increased disease susceptibility with severe condition and provide a better understanding of the pathogenesis of SARS-CoV-2 infection in smokers.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer