Abstract

For detecting field carcinogenesis non-invasively, early technical development and case–control testing of exhaled breath condensate microRNAs was performed. In design, human lung tissue microRNA-seq discovery was reconciled with TCGA and published tumor-discriminant microRNAs, yielding a panel of 24 upregulated microRNAs. The airway origin of exhaled microRNAs was topographically “fingerprinted”, using paired EBC, upper and lower airway donor sample sets. A clinic-based case–control study (166 NSCLC cases, 185 controls) was interrogated with the microRNA panel by qualitative RT-PCR. Data were analyzed by logistic regression (LR), and by random-forest (RF) models. Feasibility testing of exhaled microRNA detection, including optimized whole EBC extraction, and RT and qualitative PCR method evaluation, was performed. For sensitivity in this low template setting, intercalating dye-based URT-PCR was superior to fluorescent probe-based PCR (TaqMan). In application, adjusted logistic regression models identified exhaled miR-21, 33b, 212 as overall case–control discriminant. RF analysis of combined clinical + microRNA models showed modest added discrimination capacity (1.1–2.5%) beyond clinical models alone: all subjects 1.1% (p = 8.7e−04)); former smokers 2.5% (p = 3.6e−05); early stage 1.2% (p = 9.0e−03), yielding combined ROC AUC ranging from 0.74 to 0.83. We conclude that exhaled microRNAs are qualitatively measureable, reflect in part lower airway signatures; and when further refined/quantitated, can potentially help to improve lung cancer risk assessment.

Details

Title
Initial development and testing of an exhaled microRNA detection strategy for lung cancer case–control discrimination
Author
Shi, Miao 1 ; Han, Weiguo 2 ; Loudig, Olivier 3 ; Shah, Chirag D. 1 ; Dobkin, Jay B. 1 ; Keller, Steven 4 ; Sadoughi, Ali 1 ; Zhu, Changcheng 5 ; Siegel, Robert E. 6 ; Fernandez, Maria Katherine 7 ; DeLaRosa, Lizett 1 ; Patel, Dhruv 7 ; Desai, Aditi 7 ; Siddiqui, Taha 1 ; Gombar, Saurabh 8 ; Suh, Yousin 9 ; Wang, Tao 10 ; Hosgood, H. Dean 11 ; Pradhan, Kith 10 ; Ye, Kenny 12 ; Spivack, Simon D. 13 

 Albert Einstein College of Medicine, Pulmonary Medicine, Bronx, USA (GRID:grid.251993.5) (ISNI:0000000121791997) 
 University of Arizona, Pharmacology and Toxicology, College of Pharmacy, Tucson, USA (GRID:grid.134563.6) (ISNI:0000 0001 2168 186X) 
 Center for Discovery and Innovation, Nutley, USA (GRID:grid.134563.6) 
 Merk, Kenilworth, USA (GRID:grid.417993.1) (ISNI:0000 0001 2260 0793) 
 Albert Einstein College of Medicine, Pathology, Bronx, USA (GRID:grid.251993.5) (ISNI:0000000121791997) 
 James J. Peters Veterans Affairs Medical Center, Pulmonary Medicine, Icahn School of Medicine at Mount Sinai, New York, USA (GRID:grid.274295.f) (ISNI:0000 0004 0420 1184) 
 Montefiore Health System, Bronx, USA (GRID:grid.430447.0) (ISNI:0000000446574456) 
 Albert Einstein College of Medicine, Genetics, Bronx, USA (GRID:grid.251993.5) (ISNI:0000000121791997) 
 Columbia University, Genetics and Development, New York, USA (GRID:grid.21729.3f) (ISNI:0000000419368729); Columbia University, Reproductive Sciences (in Obstetrics and Gynecology), New York, USA (GRID:grid.21729.3f) (ISNI:0000000419368729) 
10  Albert Einstein College of Medicine, Biostatistics, Bronx, USA (GRID:grid.251993.5) (ISNI:0000000121791997) 
11  Albert Einstein College of Medicine, Epidemiology, Bronx, USA (GRID:grid.251993.5) (ISNI:0000000121791997) 
12  Albert Einstein College of Medicine, Biostatistics, Bronx, USA (GRID:grid.251993.5) (ISNI:0000000121791997); Albert Einstein College of Medicine, Systems and Computational Biology, Bronx, USA (GRID:grid.251993.5) (ISNI:0000000121791997) 
13  Albert Einstein College of Medicine, Pulmonary Medicine, Bronx, USA (GRID:grid.251993.5) (ISNI:0000000121791997); Albert Einstein College of Medicine, Epidemiology, Bronx, USA (GRID:grid.251993.5) (ISNI:0000000121791997); Albert Einstein College of Medicine, Genetics, Bronx, USA (GRID:grid.251993.5) (ISNI:0000000121791997) 
Pages
6620
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2804865447
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.