Full text

Turn on search term navigation

Copyright © 2023 Xuemei He et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Targeting the problem of autonomous navigation of indoor robots in large-scale, complicated, and unknown environments, an autonomous online decision-making algorithm based on deep reinforcement learning is put forward in this paper. Traditional path planning methods rely on the environment modeling, which can cause more workload of calculating. In this paper, the sensors to detect surrounding obstacles are combined with the DDPG (deep deterministic policy gradient) algorithm to input environmental perception and control the action direct output, which enables robots to complete the tasks of autonomous navigation and distribution without relying on environment modeling. In addition, the algorithm preprocesses the relevant data in the learning sample with Gaussian noise, facilitating the agent to adapt to noisy training environment and improve its robustness. The simulation results show that the optimized DL-DDPG algorithm is more efficient on online decision-making for the indoor robot navigation system, which enables the robot to complete autonomous navigation and intelligent control independently.

Details

Title
Intelligent Navigation of Indoor Robot Based on Improved DDPG Algorithm
Author
He, Xuemei 1 ; Yin Kuang 1   VIAFID ORCID Logo  ; Song, Ning 1 ; Liu, Fan 1 

 College of Art and Design, Shaanxi University of Science & Technology, Xi’an, China 
Editor
Zhi-Wei Liu
Publication year
2023
Publication date
2023
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2804963630
Copyright
Copyright © 2023 Xuemei He et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/