Abstract

Semiconductor lasers play critical roles in many different systems, ranging from optical communications to absorption spectroscopy for environmental monitoring. Despite numerous applications, many semiconductor lasers have problems such as significant beam divergence and polarization instability. External optical elements like objective lenses and polarizers are usually needed to address these issues. This Review will discuss how these issues have recently been dealt with by instead integrating metasurfaces into semiconductor lasers. This necessitates the development of innovative fabrication methods; these will also be the topic of this Review. Metasurfaces can be integrated on the emitting facet of a laser. This can help select the lasing mode or can be used just to modify the output beam properties without affecting the modes. They can also be integrated monolithically with lasers through waveguides, or work in an external cavity configuration. These integrated devices provide novel optical functions, such as direct orbital angular momentum (OAM) mode generation, wavelength tuning and holographic pattern generation. We hope this Review will help extend the use of metasurface-integrated semiconductor lasers to scientific and industrial systems that employ lasers.

Details

Title
Semiconductor lasers with integrated metasurfaces for direct output beam modulation, enabled by innovative fabrication methods
Author
Wen, Dandan 1 ; Crozier, Kenneth B 2 

 Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China 
 Department of Electrical and Electronic Engineering, School of Physics, and Australian Research Council (ARC) Centre of Excellence for Transformative Meta-Optical Systems, University of Melbourne, Melbourne, VIC 3010, Australia 
Pages
1443-1457
Publication year
2023
Publication date
2023
Publisher
Walter de Gruyter GmbH
ISSN
21928606
e-ISSN
21928614
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2805241696
Copyright
© 2023. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.