It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Semiconductor lasers play critical roles in many different systems, ranging from optical communications to absorption spectroscopy for environmental monitoring. Despite numerous applications, many semiconductor lasers have problems such as significant beam divergence and polarization instability. External optical elements like objective lenses and polarizers are usually needed to address these issues. This Review will discuss how these issues have recently been dealt with by instead integrating metasurfaces into semiconductor lasers. This necessitates the development of innovative fabrication methods; these will also be the topic of this Review. Metasurfaces can be integrated on the emitting facet of a laser. This can help select the lasing mode or can be used just to modify the output beam properties without affecting the modes. They can also be integrated monolithically with lasers through waveguides, or work in an external cavity configuration. These integrated devices provide novel optical functions, such as direct orbital angular momentum (OAM) mode generation, wavelength tuning and holographic pattern generation. We hope this Review will help extend the use of metasurface-integrated semiconductor lasers to scientific and industrial systems that employ lasers.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
2 Department of Electrical and Electronic Engineering, School of Physics, and Australian Research Council (ARC) Centre of Excellence for Transformative Meta-Optical Systems, University of Melbourne, Melbourne, VIC 3010, Australia