It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Utilizing colloidal probe, lateral force microscopy and simultaneous confocal microscopy, combined with finite element analysis, we investigate how a microparticle starts moving laterally on a soft, adhesive surface. We find that the surface can form a self-contacting crease at the leading front, which results from a buildup of compressive stress. Experimentally, creases are observed on substrates that exhibit either high or low adhesion when measured in the normal direction, motivating the use of simulations to consider the role of adhesion energy and interfacial strength. Our simulations illustrate that the interfacial strength plays a dominating role in the nucleation of a crease. After the crease forms, it progresses through the contact zone in a Schallamach wave-like fashion. Interestingly, our results suggest that this Schallamach wave-like motion is facilitated by free slip at the adhesive, self-contacting interface within the crease.
Soft friction remains elusive due to the complication at microscales where the elastic forces are comparable to capillarity and adhesion. Glover et al. show that a moving microparticle can induce a cease at the leading front of the underlying soft surface as a result of a build-up of compressive stress.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 University of Kentucky, Department of Chemical and Materials Engineering, Lexington, USA (GRID:grid.266539.d) (ISNI:0000 0004 1936 8438)
2 University of Colorado Boulder, Department of Mechanical Engineering, Boulder, USA (GRID:grid.266190.a) (ISNI:0000000096214564)
3 University of Kentucky, Department of Chemical and Materials Engineering, Lexington, USA (GRID:grid.266539.d) (ISNI:0000 0004 1936 8438); University of Cincinnati, Department of Chemical and Environmental Engineering, Cincinnati, USA (GRID:grid.24827.3b) (ISNI:0000 0001 2179 9593)