Full text

Turn on search term navigation

© 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Saharan dust deposits can turn snow-covered mountains into a spectacular orange landscape. When avalanches release, a formerly buried dust layer can become apparent, possibly marking the failure plane. This appearance may suggest a relation between avalanche release and the previously deposited dust, which found mention among recreationists and avalanche professionals alike. While dust deposition affects the absorption of solar energy altering snowpack temperatures and melt rates, to date, there is no clear scientific evidence that dust deposition can significantly modify snow stability. Here we investigate, using an ensemble snow cover model, the impact of dust deposition on snow properties and mechanical stability by comparing simulations with and without dust deposition for synthetic and observed dust deposition events. The study focuses on two typical avalanche situations: artificial triggering on persistent weak layers and natural release of wet-snow avalanches. We study several situations with and without dust deposition and demonstrate how sensitive the impact of dust deposition is to the deposited dust mass, the slope aspect, the elevation and the meteorological conditions following the dust deposition. The additional energy absorbed by the dust layer speeds up warming and may advance surface wetting to ease the formation of a melt-freeze crust. If the crust is buried, the phenomenon of a strong temperature gradient close to the crust may promote the formation of persistent weak layers inside the snowpack. On the other hand, the melt-freeze crust may also lead to an increase in snowpack stability by redistributing the stress applied to weak layers buried below. Regarding wet-snow instability, we show that dust deposition can advance the onset of wet-snow avalanche activity by up to 1 month in spring, as hypothesized in previous studies. Thus, the impact of Saharan dust deposition on snowpack stability can be either neutral, positive or negative, depending on the topographical, snow and meteorological conditions. Even though not all physical processes are implemented, state-of the art snow cover models are able to mimic the speed-up of crust formation, and snow instability models can point out relevant situations for avalanche forecasting.

Details

Title
Can Saharan dust deposition impact snowpack stability in the French Alps?
Author
Dick, Oscar 1 ; Viallon-Galinier, Léo 1 ; Tuzet, François 1 ; Hagenmuller, Pascal 1   VIAFID ORCID Logo  ; Fructus, Mathieu 1 ; Reuter, Benjamin 2   VIAFID ORCID Logo  ; Lafaysse, Matthieu 1 ; Dumont, Marie 1   VIAFID ORCID Logo 

 Univ. Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, CNRM, Centre d'Etudes de la Neige, 38000 Grenoble, France 
 Météo-France, Direction des opérations pour la prévision, Toulouse, France 
Pages
1755-1773
Publication year
2023
Publication date
2023
Publisher
Copernicus GmbH
ISSN
19940424
e-ISSN
19940416
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2805843623
Copyright
© 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.