Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The concept of an equivalent stress intensity factor Keq is used in the study of fatigue crack growth in mixed-mode situations. A problem seldom discussed in the research literature are the consequences of the coexistence of several alternative definitions of mixed mode Keq, leading to rather different results associated with the alternative Keq definitions. This note highlights the problem, considering several Keq definitions hitherto not analyzed simultaneously. Values of Keq calculated according to several criteria were compared through the determination of Keq/KI over a wide range of values of KI/KII or KII/KI. In earlier work on Al alloy AA6082 T6, the fatigue crack path and growth rate were measured in 4-point bend specimens subjected to asymmetrical loading and in compact tension specimens modified with holes. The presentation of the fatigue crack growth data was made using a Paris law based on Keq. Important differences are found in the Paris laws, corresponding to the alternative definitions of Keq considered, and the requirements for candidate Keq definitions are discussed. A perspective for overcoming the shortcomings may consist in developing a data-driven modelling methodology, supported by material characterization and structure monitoring during its life cycle.

Details

Title
Equivalent Stress Intensity Factor: The Consequences of the Lack of a Unique Definition
Author
Tavares, Sérgio M O 1   VIAFID ORCID Logo  ; Paulo M S T de Castro 2   VIAFID ORCID Logo 

 TEMA—Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI—Intelligent Systems Associate Laboratory, 4800-058 Guimaraes, Portugal 
 Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal 
First page
4820
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806474352
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.