Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The development of Structural Health Monitoring (SHM) and Non-Destructive Testing (NDT) techniques has rapidly evolved and matured over the past few decades. Advances in sensor technology have facilitated deploying SHM systems for large-scale structures and local NDT of structural members. Although both methods have been successfully applied to identify structural damage in various systems, Environmental and Operational Condition (EOC) variations can influence sensor measurements and mask damage signatures in the structural response. EOCs include environmental conditions, such as temperature, humidity, and wind, as well as operational conditions, such as mass loading, vibration, and boundary conditions. The effect of EOCs can significantly undermine the reliability and robustness of damage assessment technologies and limit their performance. Thus, successful SHM and NDT systems can compensate for changing EOCs. This paper provides a state-of-the-art review of the effects of EOCs on SHM and NDT systems. It presents recent developments in advanced sensing technology, signal processing, and analysis techniques that aim to eliminate the masking effect of EOC variations and increase the damage sensitivity and performance of SHM and NDT systems. The paper concludes with current research challenges, trends, and recommendations for future research directions.

Details

Title
Effects of Environmental and Operational Conditions on Structural Health Monitoring and Non-Destructive Testing: A Systematic Review
Author
Ayoub Keshmiry 1 ; Hassani, Sahar 2 ; Mousavi, Mohsen 3   VIAFID ORCID Logo  ; Dackermann, Ulrike 2   VIAFID ORCID Logo 

 Faculty of Civil Engineering, Shahrood University of Technology, Shahrood P.O. Box 3619995161, Iran 
 Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia 
 Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia 
First page
918
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806516579
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.