Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Tree is an essential factor affecting airflow and pollutant diffusion in the urban street canyon. The wind environment in the urban street canyon will be effectively improved by expounding the mechanism and implementing greening measures. Moreover, it will help decrease the pollutant concentration around the street canyon. This paper reviews the airflow and pollutant diffusion numerical simulation in the street canyon under the tree influence. Firstly, the numerical mathematical model used for pollutant diffusion and airflow in urban street canyons under the influence of trees is summarized. The representation of trees’ numerical mathematical model in the simulation domain is mainly proposed. Secondly, the wind environment and pollutant distribution factors influencing urban street canyons are elaborated and analyzed, including tree characteristics, layout, street canyon shape, and thermal. Furthermore, current research progress and deficiencies are discussed. Finally, the future research direction of wind environment and pollutant distribution simulation in urban streets under the influence of trees is pointed out.

Details

Title
Review of the Numerical Simulation of the Wind and Pollutant Diffusion in Urban Street Canyon under the Influence of Trees
Author
Wang, Le 1 ; Tian, Wenxin 2 ; Zheng, Peilin 3 

 College of Civil Engineering, Xi’an Shiyou University, Xi’an 710065, China; Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian 116024, China 
 China Energy Science and Technology Research Institute Co., Ltd., Nanjing 210023, China 
 College of Civil Engineering, Xi’an Shiyou University, Xi’an 710065, China 
First page
1088
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806517519
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.