Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

On 30 June 2013, 19 Granite Mountain Hotshots firefighters were killed fighting a wildfire near Yarnell in the mountains of Central Arizona. They succumbed when the wildfire, driven by erratic winds, blocked their escape route and overran their location. A previous study is extended to simulate and analyze the downscale organization of convective circulations that redirected the wildfire, which started from the scale of the Rossby Wave Breaking over North America to a convective gust front that redirected the wildfire, trapping the firefighters. Five stages are found: Stage I, the initial deep prolonged gust front; Stage II, a front-to-rear jet and its ascending motions that organized high-based convection; Stage III, high-based dry microburst-induced downdrafts organized initially by ascending flow in Stage II that transported mass and entropy to the surface; Stage IV; multiple meso-γ-scale high centers and confluence zones formed that encompassed the firefighters’ location, which established a favorable environment leading to Stage V, canyon-scale circulations formed surrounding the fire. The atmosphere thus transitioned from supporting a deep and long-lived convective density current to elevated dry microbursts with mass and wind outflow into a canyon, redirecting the ongoing wildfire.

Details

Title
Convective Density Current Circulations That Modulated Meso-γ Surface Winds near the Yarnell Hill Fire
Author
Kaplan, Michael L 1 ; Shajedul Karim, S M 2 ; Wiles, Jackson T 2 ; James, Curtis N 1 ; Yuh-Lang, Lin 2 ; Riley, Justin 2 

 Applied Aviation Sciences, Embry-Riddle Aeronautical University, Prescott, AZ 86301, USA 
 Department of Physics, North Carolina A & T State University, Greensboro, NC 27411, USA 
First page
130
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
25716255
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806532742
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.