Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

DNA-based antibody therapy seeks to administer the encoding nucleotide sequence rather than the antibody protein. To further improve the in vivo monoclonal antibody (mAb) expression, a better understanding of what happens after the administration of the encoding plasmid DNA (pDNA) is required. This study reports the quantitative evaluation and localization of the administered pDNA over time and its association with corresponding mRNA levels and systemic protein concentrations. pDNA encoding the murine anti-HER2 4D5 mAb was administered to BALB/c mice via intramuscular injection followed by electroporation. Muscle biopsies and blood samples were taken at different time points (up to 3 months). In muscle, pDNA levels decreased 90% between 24 h and one week post treatment (p < 0.0001). In contrast, mRNA levels remained stable over time. The 4D5 antibody plasma concentrations reached peak levels at week two followed by a slow decrease (50% after 12 weeks, p < 0.0001). Evaluation of pDNA localization revealed that extranuclear pDNA was cleared fast, whereas the nuclear fraction remained relatively stable. This is in line with the observed mRNA and protein levels over time and indicates that only a minor fraction of the administered pDNA is ultimately responsible for the observed systemic mAb levels. In conclusion, this study demonstrates that durable expression is dependent on the nuclear uptake of the pDNA. Therefore, efforts to increase the protein levels upon pDNA-based gene therapy should focus on strategies to increase both cellular entry and migration of the pDNA into the nucleus. The currently applied methodology can be used to guide the design and evaluation of novel plasmid-based vectors or alternative delivery methods in order to achieve a robust and prolonged protein expression.

Details

Title
Exploring the Fate of Antibody-Encoding pDNA after Intramuscular Electroporation in Mice
Author
Marie-Lynn Cuypers 1   VIAFID ORCID Logo  ; Geukens, Nick 2 ; Hollevoet, Kevin 2 ; Declerck, Paul 3   VIAFID ORCID Logo  ; Dewilde, Maarten 3   VIAFID ORCID Logo 

 Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, O&N II Herestraat 49 Box 820, 3000 Leuven, Belgium 
 PharmAbs-The KU Leuven Antibody Center, KU Leuven-University of Leuven, O&N II Herestraat 49 Box 820, 3000 Leuven, Belgium 
 Laboratory for Therapeutic and Diagnostic Antibodies, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, O&N II Herestraat 49 Box 820, 3000 Leuven, Belgium; PharmAbs-The KU Leuven Antibody Center, KU Leuven-University of Leuven, O&N II Herestraat 49 Box 820, 3000 Leuven, Belgium 
First page
1160
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19994923
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806571036
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.