Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background: Epirubicin is an anthracycline antineoplastic drug that is primarily used in combination therapies for the treatment of breast, gastric, lung and ovarian cancers and lymphomas. Epirubicin is administered intravenously (IV) over 3 to 5 min once every 21 days with dosing based on body surface area (BSA; mg/m2). Despite accounting for BSA, marked inter-subject variability in circulating epirubicin plasma concentration has been reported. Methods: In vitro experiments were conducted to determine the kinetics of epirubicin glucuronidation by human liver microsomes in the presence and absence of validated UGT2B7 inhibitors. A full physiologically based pharmacokinetic model was built and validated using Simcyp® (version 19.1, Certara, Princeton, NJ, USA). The model was used to simulate epirubicin exposure in 2000 Sim-Cancer subjects over 158 h following a single intravenous dose of epirubicin. A multivariable linear regression model was built using simulated demographic and enzyme abundance data to determine the key drivers of variability in systemic epirubicin exposure. Results: Multivariable linear regression modelling demonstrated that variability in simulated systemic epirubicin exposure following intravenous injection was primarily driven by differences in hepatic and renal UGT2B7 expression, plasma albumin concentration, age, BSA, GFR, haematocrit and sex. By accounting for these factors, it was possible to explain 87% of the variability in epirubicin in a simulated cohort of 2000 oncology patients. Conclusions: The present study describes the development and evaluation of a full-body PBPK model to assess systemic and individual organ exposure to epirubicin. Variability in epirubicin exposure was primarily driven by hepatic and renal UGT2B7 expression, plasma albumin concentration, age, BSA, GFR, haematocrit and sex.

Details

Title
A Physiologically Based Pharmacokinetic Model to Predict Determinants of Variability in Epirubicin Exposure and Tissue Distribution
Author
Radwan Ansaar  VIAFID ORCID Logo  ; Meech, Robyn; Rowland, Andrew  VIAFID ORCID Logo 
First page
1222
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19994923
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806572531
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.