Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Significant efforts have been made toward developing sustainable reduction reactions of organic and bioorganic compounds. In these studies, the selection of reagents and solvents has played a very important role in the development of environment-friendly methodologies. In this context, the reducing agent Cp2TiCl/H2O has been introduced as a safe, efficient, selective, and low-cost reagent, and thus as a sustainable alternative for the reduction of organic compounds. To facilitate understanding of the reductions mediated by this system, in this study we focus on describing the intermediates, mechanisms, and representative examples. Finally, a reflection is made on the future perspectives of this reducing agent, including its analog Cp2TiCl/D2O as a powerful tool for the preparation of deuterated phenols, which can be successfully used as an internal standard for analyzing bioactive phenols in olive oil.

Details

Title
Cp2TiCl/H2O as a Sustainable System for the Reduction of Organic Functional Groups: Potential Application of Cp2TiCl/D2O to the Analysis of Bioactive Phenols in Olive Oil
Author
Antonio Rosales Martínez 1   VIAFID ORCID Logo  ; García-Martín, Juan F 2   VIAFID ORCID Logo  ; Rodríguez-García, Ignacio 3   VIAFID ORCID Logo 

 Department of Chemical Engineering, Polytechnic School, University of Seville, E-41011 Sevilla, Spain 
 Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, E-41012 Sevilla, Spain 
 Department of Chemistry and Physics, Research Institute CIAIMBITAL, University of Almería, E-04120 Almería, Spain 
First page
979
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806581322
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.