Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Mechano-luminescent materials that exhibit distinct luminescence responses to force stimuli are urgently anticipated in view of application needs in the fields of sensing, anti-counterfeiting, optoelectronic devices, etc. However, most of the reported materials normally exhibit force-induced changes in luminescent intensity, whereas materials that possess force-induced color-variable luminescence remain rarely reported. Herein, for the first time, a novel mechanical force-induced color-variable luminescence material from carbon dots (CDs) in boric acid (CD@BA) is reported. At low CDs concentration, the luminescence of CD@BA exhibits a grinding-induced color variable from white to blue. This grinding-induced color variable can be switched to yellow-to-white changing by increasing the CDs concentration in BA. The grinding-induced color-variable luminescence originates from dynamic variation in emission ratio of fluorescence and room temperature phosphorescence, due to the influence of oxygen and water vapor in the air. At high CDs concentration, short-wavelength fluorescence undergoes more severe reabsorption compared to room temperature phosphorescence, leading to grinding-induced color-variable switching from white-to-blue to yellow-to-white. Based on the unique properties of CD@BA powder, the applications of recognizing and visualizing fingerprints on the surfaces of various of materials are demonstrated.

Details

Title
Mechanical Force-Induced Color-Variable Luminescence of Carbon Dots in Boric Acid Matrix
Author
Meng, Shuai 1 ; Cheng, Dengke 1 ; Gu, Hailing 1 ; Li, Yuchen 1 ; Qin, Yukun 2 ; Tan, Jing 1 ; Li, Qijun 3 

 Institute of Micro-Nano Optoelectronics and Terahertz Technology, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China 
 Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China 
 School of Mechanical Engineering, Yangzhou University, Yangzhou 225009, China 
First page
3388
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2806593411
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.