It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The two-dimensional Quantum Hall effect with no external magnetic field is called the Quantum anomalous Hall (QAH) effect. So far, experimentally realized QAH insulators all exhibit ferromagnetic order and the QAH effect only occurs at very low temperatures. On the other hand, up to now the QAH effect in collinear antiferromagnetic (AFM) materials has never been reported and the corresponding mechanism has never been proposed. In this work, we realize the QAH effect by proposing a four-band lattice model with static AFM order, which indicates that the QAH effect can be found in AFM materials. Then, as a prototype, we demonstrate that a monolayer CrO can be switched from an AFM Weyl semimetal to an AFM QAH insulator by applying strain, based on symmetry analysis and the first-principles electronic structure calculations. Our work not only proposes a scenario to search for QAH insulators in materials, but also reveals a way to considerably increase the critical temperature of the QAH phase.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer