Abstract

Random coincidences of events could be one of the main sources of background in the search for neutrino-less double-beta decay of 100Mo with macro-bolometers, due to their modest time resolution. Scintillating bolometers as those based on Li2MoO4 crystals and employed in the CROSS and CUPID experiments can eventually exploit the coincident fast signal detected in a light detector to reduce this background. However, the scintillation provides a modest signal-to-noise ratio, making difficult a pile-up pulse-shape recognition and rejection at timescales shorter than a few ms. Neganov–Trofimov–Luke assisted light detectors (NTL-LDs) offer the possibility to effectively increase the signal-to-noise ratio, preserving a fast time-response, and enhance the capability of pile-up rejection via pulse shape analysis. In this article we present: (a) an experimental work performed with a Li2MoO4 scintillating bolometer, studied in the framework of the CROSS experiment, and utilizing a NTL-LD; (b) a simulation method to reproduce, synthetically, randomly coincident two-neutrino double-beta decay events; (c) a new analysis method based on a pulse-shape discrimination algorithm capable of providing high pile-up rejection efficiencies. We finally show how the NTL-LDs offer a balanced solution between performance and complexity to reach background index 10-4 counts/keV/kg/year with 280 g Li2MoO4 (100Mo enriched) bolometers at 3034 keV, the Qββ of the double-beta decay, and target the goal of a next generation experiment like CUPID.

Details

Title
Enhanced light signal for the suppression of pile-up events in Mo-based bolometers for the 0νββ decay search.
Author
Ahmine, A. 1 ; Armatol, A. 2 ; Bandac, I. 3 ; Bergé, L. 4 ; Calvo-Mozota, J. M. 5 ; Carniti, P. 6 ; Chapellier, M. 4 ; Dixon, T. 4 ; Dumoulin, L. 4 ; Giuliani, A. 4 ; Gras, Ph. 2 ; Ferri, F. 2 ; Imbert, L. 4 ; Khalife, H. 2 ; Loaiza, P. 4 ; de Marcillac, P. 4 ; Marnieros, S. 4 ; Marrache-Kikuchi, C. A. 4 ; Nones, C. 2 ; Olivieri, E. 4 ; de Solórzano, A. Ortiz 7 ; Pessina, G. 6 ; Poda, D. V. 4 ; Redon, Th. 4 ; Scarpaci, J. A. 4 ; Velázquez, M. 1 ; Zolotarova, A. 2 

 Université Grenoble Alpes, CNRS, Grenoble INP, SIMAP, Saint Martin d’Héres, France (GRID:grid.462639.c) (ISNI:0000 0001 2170 1576) 
 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France (GRID:grid.457342.3) (ISNI:0000 0004 0619 0319) 
 Laboratorio Subterráneo de Canfranc, Canfranc-Estación, Spain (GRID:grid.499304.3) 
 Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France (GRID:grid.508754.b) 
 Laboratorio Subterráneo de Canfranc, Canfranc-Estación, Spain (GRID:grid.499304.3); Escuela Superior de Ingenierá y Tecnologí, Universidad Internacional de La Rioja, Logroño, Spain (GRID:grid.13825.3d) (ISNI:0000 0004 0458 0356) 
 INFN, Sezione di Milano Bicocca, Milan, Italy (GRID:grid.470207.6) (ISNI:0000 0004 8390 4143) 
 Universidad de Zaragoza, Centro de Astropartículas y Física de Altas Energías, Zaragoza, Spain (GRID:grid.11205.37) (ISNI:0000 0001 2152 8769) 
Pages
373
Publication year
2023
Publication date
May 2023
Publisher
Springer Nature B.V.
ISSN
14346044
e-ISSN
14346052
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2810250355
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.