It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Numerical models are crucial to understand and/or predict past and future soil organic carbon dynamics. For those models aiming at prediction, validation is a critical step to gain confidence in projections. With a comprehensive review of ~250 models, we assess how models are validated depending on their objectives and features, discuss how validation of predictive models can be improved. We find a critical lack of independent validation using observed time series. Conducting such validations should be a priority to improve the model reliability. Approximately 60% of the models we analysed are not designed for predictions, but rather for conceptual understanding of soil processes. These models provide important insights by identifying key processes and alternative formalisms that can be relevant for predictive models. We argue that combining independent validation based on observed time series and improved information flow between predictive and conceptual models will increase reliability in predictions.
Independent observation-based model validation and improved information flow between predictive and conceptual models are needed to enhance confidence in soil organic carbon predictions, suggests a review of 250 soil organic carbon models.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details













1 Laboratoire de Géologie, École normale supérieure, CNRS, PSL Univ., IPSL, Paris, France (GRID:grid.503359.9) (ISNI:0000 0001 2240 9892); Institut des Sciences de l’Ecologie et de l’Environnement de vParis (CNRS, Sorbonne Université, IRD, INRAE, UPEC, Université Paris-Cité), Sorbonne Université, Paris, France (GRID:grid.508487.6) (ISNI:0000 0004 7885 7602)
2 Stockholm University, Department of Physical Geography, Stockholm, Sweden (GRID:grid.10548.38) (ISNI:0000 0004 1936 9377); Stockholm University, Bolin Centre for Climate Research, Stockholm, Sweden (GRID:grid.10548.38) (ISNI:0000 0004 1936 9377)
3 Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, Gif-sur-Yvette, France (GRID:grid.457340.1) (ISNI:0000 0001 0584 9722); University of California, Lawrence Berkley National Laboratory, Berkeley, USA (GRID:grid.47840.3f) (ISNI:0000 0001 2181 7878)
4 University of Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, Palaiseau, France (GRID:grid.47840.3f)
5 Laboratoire de Géologie, École normale supérieure, CNRS, PSL Univ., IPSL, Paris, France (GRID:grid.503359.9) (ISNI:0000 0001 2240 9892); Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, Gif-sur-Yvette, France (GRID:grid.457340.1) (ISNI:0000 0001 0584 9722)
6 AIDA, Univ Montpellier, CIRAD, Montpellier, France (GRID:grid.121334.6) (ISNI:0000 0001 2097 0141); CIRAD, UPR AIDA, Harare, Zimbabwe (GRID:grid.121334.6); University of Zimbabwe, Department of Plant Production Sciences and Technologies, Harare, Zimbabwe (GRID:grid.13001.33) (ISNI:0000 0004 0572 0760)
7 Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, Gif-sur-Yvette, France (GRID:grid.457340.1) (ISNI:0000 0001 0584 9722)
8 University of Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, Palaiseau, France (GRID:grid.457340.1)
9 Université de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614, Reims, France (GRID:grid.464062.2)
10 INRAE, Biogéochimie des Ecosystèmes Forestiers, Nancy, France (GRID:grid.464062.2)
11 INRAE, Université de Liège, Université de Lille, Université de Picardie Jules Verne, BioEcoAgro Joint Research Unit, Barenton-Bugny, France (GRID:grid.464062.2)
12 University of Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, Palaiseau, France (GRID:grid.464062.2)
13 INRAE, InfoSol, Orléans, France (GRID:grid.507621.7)
14 Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway (GRID:grid.454322.6) (ISNI:0000 0004 4910 9859)
15 University of Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, Palaiseau, France (GRID:grid.454322.6)
16 Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France (GRID:grid.503480.a)
17 University of Zurich, Department of Geography, Zurich, Switzerland (GRID:grid.7400.3) (ISNI:0000 0004 1937 0650)
18 University of California Santa Barbara, Department of Ecology, Evolution and Marine Biology, Santa Barbara, USA (GRID:grid.133342.4) (ISNI:0000 0004 1936 9676)
19 National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, Boulder, USA (GRID:grid.57828.30) (ISNI:0000 0004 0637 9680); University of Colorado, Institute of Arctic and Alpine Research, Boulder, USA (GRID:grid.266190.a) (ISNI:0000000096214564)
20 Laboratoire de Géologie, École normale supérieure, CNRS, PSL Univ., IPSL, Paris, France (GRID:grid.503359.9) (ISNI:0000 0001 2240 9892)