It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
As the oil and gas industry expands the use of subsea processing, the complexity of subsea layouts increases, making manual design processes cumbersome and suboptimal. Here we propose a method to support subsea field design where optimization is performed on a model of the subsea system, to maximize the net present value of the project. The proposed mixed-integer nonlinear (MINLP) model is solved to compute a global optimum design considering constraints in production, equipment duties and cost, and reliability and maintenance aspects. The subsea layout, equipment capacity, oil and gas production rates, and system pressures are optimized. The method was applied on a synthetic field based on the Goliat field in the Barents Sea. The method successfully finds the best designs, while the second and third-best layouts give general insights for subsea processing layout optimization.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer