It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
As an important link in the complex system engineering project of open pit mining, the quality of the boundary determines the performance of the project to a large extent. However, changes in economic indicators may raise doubts about the optimality of mining boundaries. In this article, a coal price time series forecasting model that considers some amount of redundancy is proposed, which combines an improved sparrow search algorithm (ISSA) and a least squares support vector regression machine regression (LSSVR) algorithm. The optimal values of the penalty factor and kernel function parameter of the LSSVR model are selected by ISSA, which improves the prediction accuracy and generalization performance of the forecasting model. A multistep decision optimization method under fluctuating coal price conditions is proposed, and the model prediction results are applied to the boundary optimization design process. Using the widely applied block model as the basis, a set of optimal production nested pits is obtained, allowing the realm design results to fit the coal price fluctuation trend and further enhance enterprise efficiency. The applicability and effectiveness of this method were verified by taking an ideal two-dimensional model and an inclined coal seam open-pit coal mine in Xinjiang as an example.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Liaoning Technical University, College of Mining, Fuxin, China (GRID:grid.464369.a) (ISNI:0000 0001 1122 661X)