Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Podocytes are critical components of the glomerular filtration barrier, sitting on the outside of the glomerular basement membrane. Primary and secondary foot processes are characteristic for podocytes, but cell processes that develop in culture were not studied much in the past. Moreover, protocols for diverse visualization methods mostly can only be used for one technique, due to differences in fixation, drying and handling. However, we detected by single-cell RNA sequencing (scRNAseq) analysis that cells reveal high variability in genes involved in cell type-specific morphology, even within one cell culture dish, highlighting the need for a compatible protocol that allows measuring the same cell with different methods. Here, we developed a new serial and correlative approach by using a combination of a wide variety of microscopic and spectroscopic techniques in the same cell for a better understanding of podocyte morphology. In detail, the protocol allowed for the sequential analysis of identical cells with light microscopy (LM), Raman spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Skipping the fixation and drying process, the protocol was also compatible with scanning ion-conductance microscopy (SICM), allowing the determination of podocyte surface topography of nanometer-range in living cells. With the help of nanoGPS Oxyo®, tracking concordant regions of interest of untreated podocytes and podocytes stressed with TGF-β were analyzed with LM, SEM, Raman spectroscopy, AFM and SICM, and revealed significant morphological alterations, including retraction of podocyte process, changes in cell surface morphology and loss of cell-cell contacts, as well as variations in lipid and protein content in TGF-β treated cells. The combination of these consecutive techniques on the same cells provides a comprehensive understanding of podocyte morphology. Additionally, the results can also be used to train automated intelligence networks to predict various outcomes related to podocyte injury in the future.

Details

Title
Characterizing Intraindividual Podocyte Morphology In Vitro with Different Innovative Microscopic and Spectroscopic Techniques
Author
Kraus, Annalena 1 ; Rose, Victoria 2 ; Krüger, René 2 ; Sarau, George 3 ; Kling, Lasse 1 ; Schiffer, Mario 4 ; Christiansen, Silke 5 ; Müller-Deile, Janina 4   VIAFID ORCID Logo 

 Institute for Nanotechnology and Correlative Microscopy, INAM, 91301 Forchheim, Germany 
 Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany 
 Institute for Nanotechnology and Correlative Microscopy, INAM, 91301 Forchheim, Germany; Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 91301 Forchheim, Germany; Leuchs Emeritus Group, Max Planck Institute for the Science of Light, 91058 Erlangen, Germany 
 Department of Nephrology and Hypertension, Universitätsklinikum Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; Research Center on Rare Kidney Diseases (RECORD), Universitätsklinikum Erlangen, 91054 Erlangen, Germany 
 Institute for Nanotechnology and Correlative Microscopy, INAM, 91301 Forchheim, Germany; Fraunhofer Institute for Ceramic Technologies and Systems IKTS, 91301 Forchheim, Germany; Physics Department, Freie Universität Berlin, 14195 Berlin, Germany 
First page
1245
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734409
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2812383827
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.