Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The development of stable and efficient electrocatalysts for oxygen evolution reaction is of great significance for electro-catalytic water splitting. Bimetallic layered double hydroxides (LDHs) are promising OER catalysts, in which NiCu LDH has excellent stability compared with the most robust NiFe LDH, but the OER activity is not satisfactory. Here, we designed a NiCu LDH heterostructure electrocatalyst (Cu/NiCu LDH) modified by Cu nanoparticles which has excellent activity and stability. The Cu/NiCu LDH electrocatalyst only needs a low over-potential of 206 mV and a low Tafel slope of 86.9 mV dec−1 at a current density of 10 mA cm−2 and maintains for 70 h at a high current density of 100 mA cm–2 in 1M KOH. X-ray photoelectron spectroscopy (XPS) showed that there was a strong electronic interaction between Cu nanoparticles and NiCu LDH. Density functional theory (DFT) calculations show that the electronic coupling between Cu nanoparticles and NiCu LDH can effectively improve the intrinsic OER activity by optimizing the conductivity and the adsorption energy of oxygen-containing intermediates.

Details

Title
Engineering Cu/NiCu LDH Heterostructure Nanosheet Arrays for Highly-Efficient Water Oxidation
Author
Wang, Ao-Bing 1 ; Zhang, Xin 1 ; Hui-Juan, Xu 1 ; Li-Jun, Gao 1 ; Li, Li 1 ; Cao, Rui 1 ; Qiu-Yan, Hao 2 

 Hebei Key Laboratory of Man-Machine Environmental Thermal Control Technology and Equipment, Hebei Vocational University of Technology and Engineering, Xingtai 054000, China; [email protected] (A.-B.W.); [email protected] (X.Z.); [email protected] (L.-J.G.); [email protected] (L.L.); [email protected] (R.C.) 
 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China 
First page
3372
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2812717329
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.