Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Previous studies in robotic-assisted surgery (RAS) have studied cognitive workload by modulating surgical task difficulty, and many of these studies have relied on self-reported workload measurements. However, contributors to and their effects on cognitive workload are complex and may not be sufficiently summarized by changes in task difficulty alone. This study aims to understand how multi-task requirement contributes to the prediction of cognitive load in RAS under different task difficulties. Multimodal physiological signals (EEG, eye-tracking, HRV) were collected as university students performed simulated RAS tasks consisting of two types of surgical task difficulty under three different multi-task requirement levels. EEG spectral analysis was sensitive enough to distinguish the degree of cognitive workload under both surgical conditions (surgical task difficulty/multi-task requirement). In addition, eye-tracking measurements showed differences under both conditions, but significant differences of HRV were observed in only multi-task requirement conditions. Multimodal-based neural network models have achieved up to 79% accuracy for both surgical conditions.

Details

Title
Physiological Metrics of Surgical Difficulty and Multi-Task Requirement during Robotic Surgery Skills
Author
Lim, Chiho 1   VIAFID ORCID Logo  ; Barragan, Juan Antonio 1   VIAFID ORCID Logo  ; Farrow, Jason Michael 2 ; Wachs, Juan P 1 ; Sundaram, Chandru P 2 ; Yu, Denny 1   VIAFID ORCID Logo 

 School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, USA; [email protected] (C.L.); 
 School of Medicine, Indiana University, Indianapolis, IN 46202, USA 
First page
4354
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2812735763
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.