Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Like its outdoor counterpart (e.g., GPS), an indoor tracking system can bring about disruptive changes in how we live and work. This paper proposes a location and tracking system using a single WiFi link based on channel state information. The system can realize real-time, decimeter-level localization and tracking. In this system, phase calibration and static path elimination are realized by multiplying the conjugate signals of different antennas. Then, a three-dimensional MUSIC algorithm is employed to estimate the angle of arrival (AOA), the time of flight (TOF), and the velocity of a target. A scheme is then developed to adjust the MUSIC search range and reduce the computation time from about ten hours to tens of seconds. The Widar2.0 data set from Tsinghua University are used for the experiments; the proposed system is found to have an average tracking error of 0.68 m in the three environments of classroom, office, and corridor, which is better than the existing single link localization and tracking system.

Details

Title
A Localization and Tracking System Using Single WiFi Link
Author
Li-Ping, Tian 1 ; Liang-Qin, Chen 2 ; Zhi-Meng, Xu 2 ; Zhizhang (David) Chen 2 

 Fujian Chuanzheng Communications College, Fuzhou 350007, China 
 School of Physics and Information Engineering, Fuzhou University, Fuzhou 350008, China 
First page
2461
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2812740676
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.