Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Recently, polymer nanocomposites have attracted great interest due to their remarkable characteristics of high performance and enabling production of low-cost devices. This article explores the reflective index sensing application of the polymer nanocomposite IOC-133, which is a TiOx/polymer nanocomposite with a reflective index between 1.8 and 1.9. Considering the material properties of high reflective index, low absorption loss, and compatibility with nanoimprint lithography, a microring-based reflective index sensor with a suspended slot waveguide structure is proposed. We combined the sensing mechanism of slot waveguides with high reflective index polymer nanocomposites and designed the suspended structure to address the problem of decreasing sensitivity caused by residual layers. The sensing device was adopted as a microring resonator, which is conducive to large-scale integration. The finite-difference time-domain (FDTD) method was employed to analyze the effects of several key parameters. The results showed that the racetrack microring sensor we propose can achieve a high sensitivity of 436 nm/RIU (Refractive Index Units), about six times higher than the microring sensor with a ridge waveguide. The Q factor of the microring reaches 1.42 × 104, and the detection limit is 1.38 × 10−4 RIU. The proposed suspended slot microring sensor has potential value in the field of nanoprinted photonic integrated circuits.

Details

Title
Design of Suspended Slot Racetrack Microring Refractive Index Sensor Based on Polymer Nanocomposite
Author
Wu, Xihan 1 ; Wang, Jiajun 1 ; Han, Jiachen 2 ; Xie, Yuqi 2 ; Ge, Xuyang 2 ; Liao, Jianzhi 2 ; Yi, Yunji 1   VIAFID ORCID Logo 

 College of Integrated Circuits and Optoelectronic Chips, Shenzhen Technology University, Shenzhen 518118, China; [email protected] (X.W.); 
 College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China 
First page
2113
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2812741455
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.