Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The cucumber (Cucumis sativa L.) is often subjected to several fungal diseases. Rhizoctonia solani-induced cucumber damping-off and root rot are the most common diseases reported from the commercial greenhouses of the eastern area of Saudi Arabia. The objective of the current study is to explore the antagonistic activity of four Trichoderma species against R. solani in vitro and in vivo. Ten R. solani isolates (eight belonging to AG-4 and two belonging to AG-A and AG2-1) were studied. AG4 isolates were pathogenic to cucumber plants, while AG-A and AG2-1 isolates were non-pathogenic. Seven isolates of Trichoderma spp., named T. hamatum KSATR8, T. harzianum (KSATR9 and KSATR10), T. asperellum (KSATR11, KSATC, and KSAT1E), and T. longibrachiatum KSATS were isolated, and the identities of both R. solani and Trichoderma isolates were confirmed based on the phylogenetic analysis of the DNA sequence of the ITS region. The dual culture findings indicated that T. asperellum KSATC and KSAT1E exhibited the most significant inhibitory activities against R. solani, with values of 79.33 and 70.89%, respectively. Scanning electron microscope (SEM) images showed a considerable degradation in the cell wall and collapsing of R. solani hyphae by all Trichoderma species. Under greenhouse conditions, the application of T. asperellum KSATC and KSAT1E at concentrations of 2 × 108 conidia/mL revealed a reduction in root rot and damping-off incidence percentages with values that did not reveal a significant (p < 0.05) difference from those of Rizolex-T fungicide. Nevertheless, the efficacy of the fungicide attained 86.67%, being higher than that of T. asperellum KSATC, which reached 80%. Trichoderma asperellum KSATC and KSAT1E were the greatest in increasing peroxidase, catalase, and chitinase enzymes activities in cucumber plants. Conversely, a significant (p < 0.05) elevation in polyphenol oxidase enzyme (0.762 and 0.97 U/g FW) and total phenol content (0.55 and 0.62 mg/g FW) was recorded in cucumber plants treated with T. harzianum KSATR9 and KSATR10, respectively. The statistical analysis results displayed no considerable variations among cucumber plants regarding total chlorophyll content as a response to treatments with Trichoderma species and fungicides. Therefore, we endorse using T. asperellum KSATC and KSAT1E as an alternative to fungicides to manage root rot and damping-off in cucumbers.

Details

Title
Biological Activity of Four Trichoderma Species Confers Protection against Rhizoctonia solani, the Causal Agent of Cucumber Damping-Off and Root Rot Diseases
Author
Almaghasla, Mustafa I 1   VIAFID ORCID Logo  ; Sherif Mohamed El-Ganainy 2   VIAFID ORCID Logo  ; Ahmed Mahmoud Ismail 2   VIAFID ORCID Logo 

 Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Hofuf 31982, Saudi Arabia; [email protected]; Pests and Plant Diseases Unit, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Hofuf 31982, Saudi Arabia 
 Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Hofuf 31982, Saudi Arabia; [email protected]; Pests and Plant Diseases Unit, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Hofuf 31982, Saudi Arabia; Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt 
First page
7250
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2812748042
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.