It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The safety and usability of infrastructures such as bridges, roads, and buildings must be monitored throughout their useful life. Traditional inspection methods are time-consuming and expensive, and innovative solutions using LiDAR-based techniques have developed. This study presents a semi-automatic method for detecting deteriorations on structural elements of a bridge using an integrated dataset of point clouds and radiometric information. The method involves using a Terrestrial Laser Scanner (TLS) to obtain high-resolution georeferenced point clouds of the bridge beams, which are then filtered to identify four classes of deteriorations. Six Machine Learning Classifiers are tested and compared using Overall Accuracy and F1-score metrics. The Random Forest emerged as the best-performing. It was then optimised by reducing the input features through an importance analysis and the accuracies measured. The results show promise and can be explored further on a larger dataset. The study aims to generalise the methodology to transfer it to actual cases.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer