It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The large-scale wind energy conversion system (WECS) based on a doubly fed induction generator (DFIG) has gained popularity in recent years because of its various economic and technical merits. The fast integration of WECS with existing power grids has caused negative influence on the stability and reliability of power systems. Grid voltage sags produce a high overcurrent in the DFIG rotor circuit. Such these challenges emphasise the necessity of the low voltage ride through (LVRT) capability of a DFIG for ensuring power grid stability during voltage dips. To deal with these issues simultaneously, this paper aims to obtain the optimal values of injected rotor phase voltage for DFIG and wind turbine pitch angles for all operating wind speeds in order to achieve LVRT capability. Bonobo optimizer (BO) is a new optimization algorithm that is applied to crop the optimum values of injected rotor phase voltage for DFIG and wind turbine pitch angles. These optimal values provide the maximum possible DFIG mechanical power to guarantee rotor and stator currents do not exceed the rated values and also deliver the maximum reactive power for supporting grid voltage during faults. The ideal power curve of a 2.4 MW wind turbine has been estimated to get the allowable maximum wind power for all wind speeds. To validate the results accuracy, the BO results are compared to two other optimization algorithms: particle swarm optimizer and driving training optimizer. Adaptive neuro fuzzy inference system is employed as an adaptive controller for the prediction of the values of rotor voltage and wind turbine pitch angle for any stator voltage dip and any wind speed.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Zagazig University, Electrical Power and Machines Engineering Department, Faculty of Engineering, Zagazig, Egypt (GRID:grid.31451.32) (ISNI:0000 0001 2158 2757)