Full text

Turn on search term navigation

Copyright © 2023 Lixin Zhao et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper proposes a prediction method based on chaos theory and an improved empirical-modal-decomposition particle-swarm-optimization long short-term-memory (EMD-PSO-LSTM)-combined optimization process for passenger flow data with high nonlinearity and dynamic space-time dependence, using EMD to process the original passenger flow data and generate several eigenmodal functions (IMFs) and residuals with different characteristic scales. Based on the chaos theory, each component of the PSO algorithm was improved by introducing an inertia factor to facilitate the adjustment of its search capability to improve optimization. Each subsequence of the phase-space reconstruction was built into an improved PSO-LSTM prediction model, and the output of each prediction model was summed to determine the final output. Experimental studies were performed using data from the North Railway Station of Chengdu Rail Transit, and the results showed that the proposed model can generate better prediction results. The proposed model obtained root mean square error (RMSE) and mean absolute error (MAE) of 16.0908 and 11.3704, respectively. Compared with the LSTM, the improved PSO-LSTM, the improved EMD-PSO-LSTM, and the model proposed in this paper improved the RMSE values by 25.53%, 29.97%, and 58.76%, respectively, and the MAE values by 30.41%, 40.13%, and 63.08%, respectively, of the prediction results.

Details

Title
Short-Term Passenger Flow Forecasting for Rail Transit considering Chaos Theory and Improved EMD-PSO-LSTM-Combined Optimization
Author
Zhao, Lixin 1   VIAFID ORCID Logo  ; Jin, Hui 1   VIAFID ORCID Logo  ; Zou, Xintong 1   VIAFID ORCID Logo  ; Liu, Xiao 2 

 Liaoning University of Technology of China, Jinzhou, Liaoning 121000, China 
 North China University of Technology, Beijing 100000, China 
Editor
Ren-Yong Guo
Publication year
2023
Publication date
2023
Publisher
John Wiley & Sons, Inc.
ISSN
01976729
e-ISSN
20423195
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2813438377
Copyright
Copyright © 2023 Lixin Zhao et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.