It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The adjustment of cellular redox homeostasis is essential in when responding to environmental perturbations, and the mechanism by which cells distinguish between normal and oxidized states through sensors is also important. In this study, we found that acyl-protein thioesterase 1 (APT1) is a redox sensor. Under normal physiological conditions, APT1 exists as a monomer through S-glutathionylation at C20, C22 and C37, which inhibits its enzymatic activity. Under oxidative conditions, APT1 senses the oxidative signal and is tetramerized, which makes it functional. Tetrameric APT1 depalmitoylates S-acetylated NAC (NACsa), and NACsa relocates to the nucleus, increases the cellular glutathione/oxidized glutathione (GSH/GSSG) ratio through the upregulation of glyoxalase I expression, and resists oxidative stress. When oxidative stress is alleviated, APT1 is found in monomeric form. Here, we describe a mechanism through which APT1 mediates a fine-tuned and balanced intracellular redox system in plant defence responses to biotic and abiotic stresses and provide insights into the design of stress-resistant crops.
Cellular redox homeostasis is important when responding to environmental changes. Here, the authors demonstrate APT1 is a redox sensor in plant defense and identify a pathway for oxidative stress resistance.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 China Agricultural University, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, Beijing, China (GRID:grid.22935.3f) (ISNI:0000 0004 0530 8290)
2 Oklahoma State University, Institute for Agricultural Biosciences, Ardmore, USA (GRID:grid.65519.3e) (ISNI:0000 0001 0721 7331); Oklahoma State University, Department of Plant and Soil Sciences, Stillwater, USA (GRID:grid.65519.3e) (ISNI:0000 0001 0721 7331)