It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Meltpool modulation in Selective Laser Remelting Additive Manufacturing via an oscillating magnetic field generates Thermoelectric Magnetohydrodynamics (TEMHD) flow. Numerical predictions show that the resulting microstructure can be significantly altered. A multi-scale numerical model captures the meso-scale melt pool dynamics coupled to microscale solidification showing the microstructure evolution and solute redistribution. The results highlight the complex interaction of the various physical phenomena and also show the method’s potential to disrupt the epitaxial growth defect. The model predictions are supported by preliminary experimental results that demonstrate the dependency of the melt pool depth on magnetic field orientation. The results highlight how a time-dependent field has the potential to provide an independent control mechanism to tailor microstructures.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Computational Science and Engineering Group, University of Greenwich , UK
2 Computational Science and Engineering Group, University of Greenwich , UK; Institute of Physics, University of Latvia , Jelgavas iela 3, Riga, LV-1004 , Latvia
3 Department of Mechanical Engineering , UCL , UK