Abstract

Background

Bacillomycin D-C16 can induce resistance in cherry tomato against pathogens; however, the underlying molecular mechanism is poorly understood. Here, the effect of Bacillomycin D-C16 on induction of disease resistance in cherry tomato was investigated using a transcriptomic analysis.

Results

Transcriptomic analysis revealed a series of obvious enrichment pathways. Bacillomycin D-C16 induced phenylpropanoid biosynthesis pathways and activated the synthesis of defense-related metabolites including phenolic acids and lignin. Moreover, Bacillomycin D-C16 triggered a defense response through both hormone signal transduction and plant-pathogen interactions pathways, and increased the transcription of several transcription factors (e.g., AP2/ERF, WRKY and MYB). These transcription factors might contribute to the further activated the expression of defense-related genes (PR1, PR10 and CHI) and stimulated the accumulation of H2O2.

Conclusion

Bacillomycin D-C16 can induce resistance in cherry tomato by activating the phenylpropanoid biosynthesis pathway, hormone signal transduction pathway and plant-pathogen interactions pathway, thus activating comprehensive defense reaction against pathogen invasion. These results provided a new insight into the bio-preservation of cherry tomato by the Bacillomycin D-C16.

Details

Title
Transcriptomic analysis reveals that Bacillomycin D-C16 induces multiple pathways of disease resistance in cherry tomato
Author
Xue, Yingying; Sun, Jing; Lu, Fengxia; Bie, Xiaomei; Li, Yuanhong; Lu, Yingjian; Lu, Zhaoxin; Lin, Fuxing
Pages
1-17
Section
Research
Publication year
2023
Publication date
2023
Publisher
BioMed Central
e-ISSN
14712164
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2815558822
Copyright
© 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.