It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Purpose
The purpose of this study is to investigate the relationship between the susceptibility to type 2 diabetes and gut microbiota in rats and to explore the potential mechanism involved.
Methods
Thirty-two SPF-grade SD rats were raised as donor rats, and divided into control, type 2 diabetes mellitus (T2DM, fasting blood glucose ≥ 11.1 mmol/L), and Non-T2DM (fasting blood glucose < 11.1 mmol/L) groups. Feces were collected and prepared as fecal bacteria supernatants Diab (fecal bacteria supernatant of T2DM group rats), Non (fecal bacteria supernatant of Non-T2DM group rats), and Con (fecal bacteria supernatant of control group rats). Another seventy-nine SPF-grade SD rats were separated into normal saline (NS) and antibiotics (ABX) groups and given normal saline and antibiotics solutions, respectively. In addition, the ABX group rats were randomly separated into ABX-ord (fed with a 4-week ordinary diet), ABX-fat (fed with a 4-week high-fat diet and STZ ip), FMT-Diab (with transplanted fecal bacteria supernatant Diab and fed with a 4-week high-fat diet and STZ ip), FMT-Non (with transplanted fecal bacteria supernatant Non and fed with a 4-week high-fat diet and STZ ip), and FMT-Con (with transplanted fecal bacteria supernatant Con and fed with a 4-week high-fat diet and STZ ip) groups. Furthermore, the NS group was randomly divided into NS-ord (fed with a 4-week ordinary diet) and NS-fat (fed with a 4-week high-fat diet and STZ ip) groups. After this, the short-chain fatty acids (SCFAs) in the feces were detected using gas chromatography, and the gut microbiota were detected using 16S rRNA gene sequencing. Finally, G protein-coupled receptor 41 (GPR41) and GPR43 were detected by western blot and quantitative real-time polymerase chain reaction.
Results
G__Ruminococcus_gnavus_group were more abundant in the FMT-Diab group compared to the ABX-fat and FMT-Non groups. The levels of blood glucose, serum insulin, total cholesterol, triglycerides, and low-density lipoprotein cholesterol were also higher in the FMT-Diab group compared to those of the ABX-fat group. Compared to the ABX-fat group, both the FMT-Diab and FMT-Non groups had higher contents of acetic and butyric acid, and the expression of GPR41/43 were significantly higher as well.
Conclusions
G__Ruminococcus_gnavus_group might make rats more susceptible to T2DM; T2DM-susceptible flora transplantation increased the susceptibility to T2DM in rats. Additionally, gut microbiota-SCFAs-GPR41/43 may play a role in the development of T2DM. Lowering blood glucose by regulating gut microbiota may therefore become a new strategy for the treatment of T2DM in humans.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer